BackgroundAdvances in DNA sequencing technologies have prompted a wide range of genomic applications to improve healthcare and facilitate biomedical research. However, privacy and security concerns have emerged as a challenge for utilizing cloud computing to handle sensitive genomic data.MethodsWe present one of the first implementations of Software Guard Extension (SGX) based securely outsourced genetic testing framework, which leverages multiple cryptographic protocols and minimal perfect hash scheme to enable efficient and secure data storage and computation outsourcing.ResultsWe compared the performance of the proposed PRESAGE framework with the state-of-the-art homomorphic encryption scheme, as well as the plaintext implementation. The experimental results demonstrated significant performance over the homomorphic encryption methods and a small computational overhead in comparison to plaintext implementation.ConclusionsThe proposed PRESAGE provides an alternative solution for secure and efficient genomic data outsourcing in an untrusted cloud by using a hybrid framework that combines secure hardware and multiple crypto protocols.
Machine learning applications are intensively utilized in various science fields, and increasingly the biomedical and healthcare sector. Applying predictive modeling to biomedical data introduces privacy and security concerns requiring additional protection to prevent accidental disclosure or leakage of sensitive patient information. Significant advancements in secure computing methods have emerged in recent years, however, many of which require substantial computational and/or communication overheads, which might hinder their adoption in biomedical applications. In this work, we propose SecureLR, a novel framework allowing researchers to leverage both the computational and storage capacity of Public Cloud Servers to conduct learning and predictions on biomedical data without compromising data security or efficiency. Our model builds upon homomorphic encryption methodologies with hardware-based security reinforcement through Software Guard Extensions (SGX), and our implementation demonstrates a practical hybrid cryptographic solution to address important concerns in conducting machine learning with public clouds.
Background Patient privacy is a ubiquitous problem around the world. Many existing studies have demonstrated the potential privacy risks associated with sharing of biomedical data. Owing to the increasing need for data sharing and analysis, health care data privacy is drawing more attention. However, to better protect biomedical data privacy, it is essential to assess the privacy risk in the first place. Objective In China, there is no clear regulation for health systems to deidentify data. It is also not known whether a mechanism such as the Health Insurance Portability and Accountability Act (HIPAA) safe harbor policy will achieve sufficient protection. This study aimed to conduct a pilot study using patient data from Chinese hospitals to understand and quantify the privacy risks of Chinese patients. Methods We used g-distinct analysis to evaluate the reidentification risks with regard to the HIPAA safe harbor approach when applied to Chinese patients’ data. More specifically, we estimated the risks based on the HIPAA safe harbor and limited dataset policies by assuming an attacker has background knowledge of the patient from the public domain. Results The experiments were conducted on 0.83 million patients (with data field of date of birth, gender, and surrogate ZIP codes generated based on home address) across 33 provincial-level administrative divisions in China. Under the Limited Dataset policy, 19.58% (163,262/833,235) of the population could be uniquely identifiable under the g-distinct metric (ie, 1-distinct). In contrast, the Safe Harbor policy is able to significantly reduce privacy risk, where only 0.072% (601/833,235) of individuals are uniquely identifiable, and the majority of the population is 3000 indistinguishable (ie the population is expected to share common attributes with 3000 or less people). Conclusions Through the experiments based on real-world patient data, this work illustrates that the results of g-distinct analysis about Chinese patient privacy risk are similar to those from a previous US study, in which data from different organizations/regions might be vulnerable to different reidentification risks under different policies. This work provides reference to Chinese health care entities for estimating patients’ privacy risk during data sharing, which laid the foundation of privacy risk study about Chinese patients’ data in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.