Recent developments in gradient-based attention modeling have seen attention maps emerge as a powerful tool for interpreting convolutional neural networks. Despite good localization for an individual class of interest, these techniques produce attention maps with substantially overlapping responses among different classes, leading to the problem of visual confusion and the need for discriminative attention. In this paper, we address this problem by means of a new framework that makes class-discriminative attention a principled part of the learning process. Our key innovations include new learning objectives for attention separability and cross-layer consistency, which result in improved attention discriminability and reduced visual confusion. Extensive experiments on image classification benchmarks show the effectiveness of our approach in terms of improved classification accuracy, including CIFAR-100
Background
Patient privacy is a ubiquitous problem around the world. Many existing studies have demonstrated the potential privacy risks associated with sharing of biomedical data. Owing to the increasing need for data sharing and analysis, health care data privacy is drawing more attention. However, to better protect biomedical data privacy, it is essential to assess the privacy risk in the first place.
Objective
In China, there is no clear regulation for health systems to deidentify data. It is also not known whether a mechanism such as the Health Insurance Portability and Accountability Act (HIPAA) safe harbor policy will achieve sufficient protection. This study aimed to conduct a pilot study using patient data from Chinese hospitals to understand and quantify the privacy risks of Chinese patients.
Methods
We used g-distinct analysis to evaluate the reidentification risks with regard to the HIPAA safe harbor approach when applied to Chinese patients’ data. More specifically, we estimated the risks based on the HIPAA safe harbor and limited dataset policies by assuming an attacker has background knowledge of the patient from the public domain.
Results
The experiments were conducted on 0.83 million patients (with data field of date of birth, gender, and surrogate ZIP codes generated based on home address) across 33 provincial-level administrative divisions in China. Under the Limited Dataset policy, 19.58% (163,262/833,235) of the population could be uniquely identifiable under the g-distinct metric (ie, 1-distinct). In contrast, the Safe Harbor policy is able to significantly reduce privacy risk, where only 0.072% (601/833,235) of individuals are uniquely identifiable, and the majority of the population is 3000 indistinguishable (ie the population is expected to share common attributes with 3000 or less people).
Conclusions
Through the experiments based on real-world patient data, this work illustrates that the results of g-distinct analysis about Chinese patient privacy risk are similar to those from a previous US study, in which data from different organizations/regions might be vulnerable to different reidentification risks under different policies. This work provides reference to Chinese health care entities for estimating patients’ privacy risk during data sharing, which laid the foundation of privacy risk study about Chinese patients’ data in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.