The highly enantioselective three-component Biginelli condensation catalyzed by a recyclable chiral ytterbium triflate with a novel hexadentate amine phenol ligand containing a pyridyl group has been developed. A wide range of optically active dihydropyrimidines with remarkable pharmacological interest was obtained in high yields with good to excellent enantioselectivities under mild conditions.
The construction of an aryl ketone structural unit by means of catalytic carbon–carbon coupling reactions represents the state-of-the-art in organic chemistry. Herein we achieved the direct deoxygenative ketone synthesis in aqueous solution from readily available aromatic carboxylic acids and alkenes, affording structurally diverse ketones in moderate to good yields. Visible-light photoredox catalysis enables the direct deoxygenation of acids as acyl sources with triphenylphosphine and represents a distinct perspective on activation. The synthetic robustness is supported by the late-stage modification of several pharmaceutical compounds and complex molecules. This ketone synthetic strategy is further applied to the synthesis of the drug zolpidem in three steps with 50% total yield and a concise construction of cyclophane-braced 18–20 membered macrocycloketones. It represents not only the advancement for the streamlined synthesis of aromatic ketones from feedstock chemicals, but also a photoredox radical activation mode beyond the redox potential of carboxylic acids.
Density functional theory (DFT) investigations revealed that 4-cyanopyridine was capable of homolytically cleaving the B-B σ bond of diborane via the cooperative coordination to the two boron atoms of the diborane to generate pyridine boryl radicals. Our experimental verification provides supportive evidence for this new B-B activation mode. With this novel activation strategy, we have experimentally realized the catalytic reduction of azo-compounds to hydrazine derivatives, deoxygenation of sulfoxides to sulfides, and reduction of quinones with B2 (pin)2 at mild conditions.
The remote radical migration strategy has gained considerable momentum. During the past three years, we have witnessed the rapid development of sustainable and practical C-C and C-H bond functionalization by means of long-distance 1,n-radical migration (n = 4, 5, 6) events. Its advent brings our chemical community a new platform to deal with the challenging migration transformations and thus complements the existing ionic-type migration protocols. In this review, the recent achievements in distal radical migration triggered C-C and C-H bond functionalization are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.