Terahertz radiation for inspection and fault detection has been of interest for the semiconductor industry since the first generation and detection of THz signals. Until recent hardware advances, THz systems lacked the signal quality and reliability for use as an effective nondestructive testing (NDT) method. Incremental advances in THz sources, detectors, and signal processing resulted in the successful applied-industrial use of THz NDT techniques on carbon fiber laminates, automotive coatings, and for detection of counterfeit pharmaceutical tablets. Semiconductor inspection and verification methods ensure the functionality and thereby safety of vital electronics for several critical industries. For this reason, the reliability and verification of a THz NDT method must exceed currently used inspection systems. With recent laboratory access to THz radiation, THz inspection methods are often compared with existing optical, electrical, and volumetric semiconductor verification techniques for their production monitoring and failure analysis viability. This review will cover THz techniques and their applications at the printed circuit board (PCB), integrated circuit (IC), and transistor/gate scales. The THz radiation gap spans between optical and electronic ranges with a millimeter-sized wavelength allowing for adequate penetration of plastic and ceramic and semiconductor materials. THz radiation can be used to determine structural features, electrical signatures in the THz range, and chemical information simultaneously. Cost and environmental limitations restricted the ability for THz NDT semiconductor inspection methods to escape the lab and succeed in the dynamic environment of a semiconductor fabrication environment. Hybridized metrology methods incorporating information from multiple inspection tools are a regime where THz spectral and structural data can be combined with existing methods such as optical, x-ray, or E-beam. THz can be used initially to offer support to the complex failure analysis and verification requirements of the semiconductor industry from nanoscale to macroscale features and components. For THz systems to become independent inspection tools used for semiconductor production monitoring, in the lab or fab, this will require a confident level of statistical process control for THz signal generation, detection, or processing. Applied industrial semiconductor device inspection will likely be a result of a combination of research into THz hardware, reconstruction techniques, and the widespread application of machine learning techniques. Many breakthroughs occurred over the years to enable successful nondestructive characterization and inspection of semiconductor devices from the nanoscale transistors to fully packaged integrated circuits and assembled PCBs.
Intercellular communication between vascular and nerve cells mediated by diffusible proteins has recently emerged as a critical intrinsic program for neural development. However, whether the vascular smooth muscle cell (VSMC) secretome regulates the connectivity of neural circuits remains unknown. Here, we show that conditioned medium from brain VSMC cultures enhances multiple neuronal functions, such as neuritogenesis, neuronal maturation, and survival, thereby improving circuit connectivity. However, protein denaturation by heating compromised these effects. Combined omics analyses of donor VSMC secretomes and recipient neuron transcriptomes revealed that overlapping pathways of extracellular matrix receptor signaling and adhesion molecule integrin binding mediate VSMC-dependent neuronal development. Furthermore, we found that human arterial VSMCs promote neuronal development in multiple ways, including expanding the time window for nascent neurite initiation, increasing neuronal density, and promoting synchronized firing, whereas human umbilical vein VSMCs lack this capability. These in vitro data indicate that brain arteriolar VSMCs may carry direct instructive information for neural development through intercellular communication in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.