A hexagonal Cu2SnS3 with uniform and well-dispersed nanoparticle morphology has been synthesized, representing an example of hexagonal system in the Cu–Sn–E (S, Se) ternary chalcogenides. Both theoretical calculation and experimental results give the unique metallic character of Cu2SnS3, which is significantly different from the traditional opinion that I-IV-VI ternary chalcogenides were regarded previously as small or middle band-gap semiconductors. Also, M(I)2SnS3 (M=Ag, Au, Rb, and Cs) serial compounds are another potential family of conducting sulfides. The conducting Cu2SnS3 product with the interlayer space and tunnels in the crystal structures could be fascinatingly introduced to the lithium battery application.
In this paper, thermoplastic phenol formaldehyde (PF) grafted cyclic neopentyl phosphate (PFCP) was synthesized by using PF and 2,2-dimethyl-1,3-propanediol phosphoryl chloride. It was characterized by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR). Compared to PF, PFCP shows improved thermal and thermoxidative stability and allows itself to be used in polyamide 6 (PA6). A micro-intumescent flame retardant system was constructed by using cyclic neopentyl phosphate as acid source, PF as charring agent and PA6 whose decomposition products work as blowing agent. The results showed that PA6/PFCP composite is classified the UL-94 V-0 rating and get a LOI value of 35.5% at 25% loading of PFCP. SEM results showed that the outside of char residues is continuous and dense, but the inside is micro-intumescent and porous. XPS analysis of char revealed that most of phosphorus remained in the char layer. All the results suggest that the mode of flame retardant's action for PA6/PFCP composites is shifted from melting away to charring protection with the content of PFCP increasing. The coherent char generated by the decomposition of PFCP contributes most to flame retardancy of PA6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.