SUMMARY Plants use cell surface-resident receptor-like kinases (RLKs) to sense diverse extrinsic and intrinsic cues and elicit distinct biological responses. In Arabidopsis, the ERECTA family RLKs recognize EPIDERMAL PATTERNING FACTORS (EPFs) to specify stomatal patterning. However, little is known about the molecular link between ERECTA activation and intracellular signaling. We report here that the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs regulate stomatal patterning downstream of EPF ligands and upstream of a MAP kinase cascade. EPF ligands induce the heteromerization of ERECTA and SERK family RLKs. SERKs and ERECTA family RLKs transphosphorylate each other. In addition, SERKs associate with the receptor-like protein (RLP) TMM, a signal modulator of stomata development, in a ligand-independent manner, suggesting that ERECTA, SERKs and TMM form a multi-protein receptorsome consisting of different RLKs and RLP perceiving peptide ligands in regulating stomatal patterning. In contrast to the differential requirement of individual SERK members in plant immunity, cell death control and BR signaling, all four functional SERKs are essential but with unequal genetic contributions to stomatal patterning with descending order of importance from SERK3/BAK1, SERK2, SERK1 to SERK4. Although BR signaling connects stomatal development via multiple components, the function of SERKs in stomatal patterning is uncoupled from their involvement in BR signaling. Our results reveal that the SERK family is a shared key module in diverse Arabidopsis signaling receptorsomes and different combinatorial codes of individual SERK members regulate distinct functions.
Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.
Fast degradation rates in the physiological environment constitute the main limitation for magnesium alloys used in biodegradable hard tissue implants. In this work, the corrosion behavior of AZ91 magnesium alloy in simulated body fluids (SBF) was systematically investigated to determine its performance in a physiological environment. The influence of the main constituent phases on the corrosion behavior was studied by in situ visual observation and scanning electron microscopy. Energy dispersive x-ray spectrometry and Fourier transfer infrared spectroscopy revealed that both calcium and magnesium phosphates are present in the corroded products besides magnesium oxide. Electrochemical methods including open circuit potential evolution and electrochemical impedance spectroscopy were used to investigate the mechanism. The corresponding electrode controlled processes and evolution of the corrosion products layer were discussed. The degradation rate after immersion in SBF for seven days was calculated from both the weight loss and hydrogen evolution methods.
Summary Pseudomonas syringae delivers a plethora of effector proteins into host cells to sabotage immune responses and modulate physiology to favor infection. We have previously shown that P. syringae pv. tomato DC3000 effector HopF2 suppresses Arabidopsis innate immunity triggered by multiple microbe-associated molecular patterns (MAMP) at the plasma membrane. We show here that HopF2 possesses distinct mechanisms in the suppression of two branches of MAMP-activated MAP kinase (MPK) cascades. Besides blocking MKK5 (MPK kinase 5) activation in the MEKK1/MEKKs-MKK4/5-MPK3/6 cascade, HopF2 targets additional component(s) upstream of MEKK1 in the MEKK1-MKK1/2-MPK4 cascade and plasma membrane-localized receptor-like cytoplasmic kinase BIK1 and its homologs. We further show that HopF2 directly targets BAK1, a plasma membrane-localized receptor-like kinase involved in multiple MAMP signaling. The interaction between BAK1 and HopF2 or two other P. syringae effectors AvrPto and AvrPtoB, was confirmed in vivo and in vitro. Consistent with BAK1 as a physiological target of AvrPto, AvrPtoB and HopF2, the strong growth defects or lethality associated with ectopic expression of these effectors in wild-type Arabidopsis transgenic plants were largely alleviated in bak1 mutant plants. Thus, our results provide genetic evidence to further support that BAK1 is a physiological target of AvrPto, AvrPtoB and HopF2. Identification of BAK1 as an additional target of HopF2 virulence not only explains HopF2 suppression of multiple MAMP signaling at the plasma membrane, but also supports the notion that pathogen virulence effectors act through multiple targets in host cells.
The objective of this study is to investigate the corrosion susceptibility of surgical AZ91 magnesium alloys in simulated body fluids (SBFs) consisting of bovine serum albumin (BSA) and acidic SBFs (pH 5) using electrochemical methods. The addition of BSA significantly moves the open-circuit potential toward a more positive value and suppresses the corrosion reaction. The corrosion resistance under the open-circuit conditions in the SBFs with 1 g/L BSA is approximately twice that in the SBFs. A higher BSA concentration decreases the corrosion susceptibility. In addition, the acidic SBF results in a higher alloy dissolution rate. The possible mechanisms are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.