Background: The prognostic significance of podoplanin (PDPN) in tumor cells for cancer patients’ survival remains controversial. Therefore, we performed this meta-analysis to clarify the relationship between the podoplanin-positive tumor cells and cancer prognosis. Method: Eligible studies were identified by searching the Pubmed and EBSCO online databases up to August 2019. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to evaluate the correlation between podoplanin expression and overall survival (OS) and/or disease-free survival (DFS) and odds ratios (ORs) with 95% CIs severed as the summarized statistics for clinicopathological characteristic. Results: A total of 2155 patients from 21 eligible studies were included. The results revealed that high expression of podoplanin was associated with a poor survival rate in cancer patients. Further subgroup analysis stratified by tumor type showed that podoplanin-positive tumor cell infiltration had a negative prognostic effect associated with survival in esophageal cancer and oropharyngeal cancer. In addition, high expression of these cells was significantly associated with N stage, T stage, TNM stage and vascular invasion. Conclusion: Our study suggests the over-expression of podoplanin might be a significant prognostic indicator for patients with esophageal and oropharyngeal cancer.
BackgroundIt has been demonstrated that activated islet stellate cells (ISCs) play a critical role in islet fibrogenesis and significantly contribute to the progression of type 2 diabetes mellitus. However, the key molecules responsible for ISCs activation have not yet been determined. This study aimed to identify the potential key genes involved in diabetes-induced activation of ISCs.MethodStellate cells were isolated from three 10-week-old healthy male Wistar rats and three Goto-Kakizaki (GK) rats. Cells from each rat were primary cultured under the same condition. A Genome-wide transcriptional sequence of stellate cells was generated using the Hiseq3000 platform. The identified differentially expressed genes were validated using quantitative real-time PCR and western blotting in GK rats, high fat diet (HFD) rats, and their controls.ResultsA total of 204 differentially expressed genes (DEGs) between GK. ISCs and Wistar ISCs (W.ISCs) were identified, accounting for 0.58% of all the 35,362 genes detected. After the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses, the mRNA levels of these genes were further confirmed by real-time PCR in cultured ISCs. We then selected Fos, Pdpn, Bad as the potential key genes for diabetes-induced activation of ISCs. Finally, we confirmed the protein expression levels of FOS, podoplanin, and Bad by western blotting and immunofluorescence in GK rats, HFD rats, and their controls. The results showed that the expression level of FOS was significantly decreased, while podoplanin and Bad were significantly increased in GK.ISCs and HFD rats compared with controls, which were consistent with the expression of α-smooth muscle actin.ConclusionsA total of 204 DEGs were found between the GK.ISCs and W.ISCs. After validating the expression of potential key genes from GK rats and HFD rats, Fos, Pdpn, and Bad might be potential key genes involved in diabetes-induced activation of ISCs.
Background Long non-coding RNAs (lncRNAs) are important mediators in the pathogenesis of diabetic gastrointestinal autonomic neuropathy, which has just been reported to have a relation to enteric glial cells (EGCs). However, the role of lncRNAs in the pathogenesis of diabetic gastrointestinal autonomic neuropathy, especially EGCs-related gastrointestinal dysfunction, has never been reported. Methods RNA sequencing technology (RNA-Seq) was used to screen the differential lncRNAs and mRNAs in EGCs under hyperglycemia (300 mmol L− 1 high glucose). Results Totally 4678 differentially expressed lncRNAs (DE lncRNAs) and 6244 differentially expressed mRNAs (DE mRNAs) were obtained. GO enrichment analysis and KEGG pathway analysis showed significant differences. 2910 and 1549 co-expressed mRNAs were respectively expressed in up-regulated and down-regulated DE lncRNA target genes. Several up- or down-regulated lncRNAs were at the key junction points of the regulatory network. Protein-protein interaction networks showed highly connected clusters were TP53, AKT1, Casp9, Casp8, Casp3, TNF, etc, which are known closely related to apoptosis. FLRT3, Fras1, and other related target genes, which revealed the potential function of lncRNAs, may be important targets for differential lncRNAs to regulate the apoptosis of glial cells induced by hyperglycemia. Conclusion In this study, the involvement of lncRNAs in EGCs under hyperglycemia was analyzed using transcriptome analysis.
Aims. We explored whether and how perilipin 2 (Plin2) protected islets against lipotoxicity-induced islet dysfunction by regulating islet stellate cells (ISCs) activation. Methods. Six-week-old male rats were given a high-fat diet or a control diet for 28 weeks. Glucose metabolic phenotypes were assessed using glucose/insulin tolerance tests, masson, and immunohistochemical staining. ISCs activation levels were assessed from rats and palmitic acid- (PA-) treated cultured ISCs by immunofluorescence, Oil red O staining, electron microscopy, quantitative PCR, and western blotting. Changes in ISCs phenotype of activation degree and its underlying mechanisms were assessed by target gene lentiviral infection, high-performance liquid chromatography (HPLC), and western blotting. Results. Obese rats showed glucose intolerance, decreased endocrine hormone profiles, and elevated expression of α-smooth muscle actin (α-SMA), a polygonal appearance without cytoplasmic lipid droplets of ISCs in rats and isolated islets. PA-treated cultured ISCs exhibited faster proliferation and migration abilities with the induction of mRNA levels of lipid metabolism proteins, especially Plin2. The overexpression of Plin2 resulted in ISCs “re-quiescent” phenotypes associated with inhibition of the Smad3-TGF-β signaling pathways. Conclusions. Our observations suggest a protective role of Plin2 in weakening ISCs activation. It may serve as a novel therapeutic target for preventing islet fibrosis for T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.