Colorectal cancer (CRC) is a prevalent and serious gastrointestinal malignancy with high mortality and morbidity. Chemoprevention refers to a newly emerged strategy that uses drugs with chemopreventive properties to promote antioxidation, regulate cancer cell cycle, suppress proliferation, and induce cellular apoptosis, so as to improve cancer treatment outcomes. Natural polyphenols are currently recognized as a class of chemopreventive agents that have shown remarkable anticarcinogenic properties. Numerous in vitro and in vivo studies have elucidated the anti-CRC mechanisms of natural polyphenols, such as regulation of various molecular and signaling pathways. Natural polyphenols are also reportedly capable of modulating the gut microbiota and cancer stem cells (CSCs) to suppress tumor formation and progression. Combined use of different natural polyphenols is recommended due to their low bioavailability and instability, and combination treatment can exert synergistical effects, reduce side effects, and avoid drug resistance in CRC treatment. In summary, the application of polyphenols in the chemoprevention and treatment of CRC is promising. Further clinical evaluation of their effectiveness is warranted and anticipated.
Objective: Colon cancer is a malignant neoplastic disease that seriously endangers the health of patients. Pulsatilla decoction (PD) has some therapeutic effects on colon cancer. This study is based on the analytical methods of network pharmacology and molecular docking to study the mechanism of PD in the treatment of colon cancer.Methods: Based on the Traditional Chinese Medicine Systems Pharmacology Database, the main targets and active ingredients in PD were filtered, and then, the colon cancer-related targets were screened using Genecards, OMIM, PharmGKB, and Drugbank databases. Then, the screened drug and disease targets were Venn analyzed to obtain the intersection targets. Cytoscape software was used to construct the “Components–Targets–Pathway” map, and the String database was used to analyze the protein interaction network of the intersecting targets and screen the core targets, and then, the core targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Molecular docking was implemented using AutoDockTools to predict the binding capacity for the core targets and the active components in PD.Results: Sixty-five ingredients containing 188 nonrepetitive targets were screened and 180 potential targets of PD anticolon cancer were identified, including 10 core targets, namely, MAPK1, JUN, AKT1, TP53, TNF, RELA, MAPK14, CXCL8, ESR1, and FOS. The results of GO analysis showed that PD anticolon cancer may be related to cell proliferation, apoptosis, energy metabolism, immune regulation, signal transduction, and other biological processes. The results of KEGG analysis indicated that the PI3K-Akt signaling pathway, MAPK signaling pathway, proteoglycans in cancer, IL-17 signaling pathway, cellular senescence, and TNF signaling pathway were mainly involved in the regulation of tumor cells. We further selected core targets with high degree values as receptor proteins for molecular docking with the main active ingredients of the drug, including MAPK1, JUN, and AKT1. The docking results showed good affinity, especially quercetin.Conclusion: This study preliminarily verified that PD may exert its effect on the treatment of colon cancer through multi-ingredients, multitargets, and multipathways. This will deepen our understanding of the potential mechanisms of PD anticolon cancer and establish a foundation for further basic experimental research.
Recent studies have identified the curative effects of traditional Chinese medicine for constipation. The mechanism of action of Guiren Runchang granules (GRGs) in the treatment of slow transit constipation (STC) was evaluated in this study. Here, we assessed the efficacy of GRG by comparing the differences in fecal characteristics, stool weight, and intestinal transit rate (ITR) among 6 groups (n = 12/group), which were administered three concentrations of GRG, mosapride, and saline. The influence of GRG on the SCF/c-kit pathway, AQP4, and serum motilin of mice was assessed through ELISA, western blot, and immunohistochemical analysis. The dry weight of mouse feces at 24 hr and ITR in the MD (medium-dose GRG; 9.44 g/kg/d) and HD (high-dose GRG; 18.88 g/kg/d) groups was higher than that in the MC (model control) group. The serum motilin of morphine-induced mice level was lower in the MC group than in the NC (normal control) group, and this condition was improved in the HD group. The HD group expressed significantly higher levels of SCF and c-kit protein but lower levels of AQP4 and simultaneously presented more SCF-positive and c-kit-positive cells. However, no differences in the serum SCF level were found among the six groups. Certain concentrations of GRG are effective in STC mice, the potential mechanism of which may be associated with repairing the SCF/c-kit pathway and reducing the expression of AQP4 in the colon. GRG improved the serum motilin level but had no influence on the serum SCF level.
Background: Inflammatory bowel disease (IBD) is a chronic disease whose etiology is not yet fully understood, and their course is characterized by periods of exacerbation and remission. In quite a few cases, actual disease remission may also accompany with inflammatory bowel disease (IBS)-like symptoms such as abdominal pain, bloating, flatulence, and diarrhea, may greatly impact quality of life. An army of strong evidence to support the FODMAPs diet (LFD) compounds as an effective dietary approach to IBS treatment. However, there is no significant evidence showing the effectiveness of LFD in treating quiescent IBD and its side effects; this lack of evidence is also an important factor hindering its promotion in the treatment of IBD and its complications. Therefore, this systematic review and meta-analysis will evaluate the efficacy and safety of LFD in the treatment of quiescent IBD patients with IBS-like symptoms.Method: We searched the following databases from their establishment until December 2021: PubMed, Web of Science, Embase, Cochrane Library, CNKI, VIP, and Wanfang databases. No restrictions regarding publication date or language were applied. Keywords such as "Crohn's disease," "ulcerative colitis," "inflammatory bowel disease," and "FODMAPs" have been combined for search. Ongoing and unpublished research in the Clinical Trials Registry Research will also be included. At the same time, we will manually search all reference lists from relevant systematic reviews for other eligible studies. The selected studies were randomized controlled clinical trials. We will meta-analyze the selected literature by Review Manager software (REVMAN v5.4 Cochrane Collaboration). Two researchers will independently review the research selection, data extraction, and research quality assessments. Finally, we will observe the outcome measures.Results: This study will provide evidence-based data for TFD treatment of IBD and provide new treatment options for future clinical applications.Ethics and dissemination: The protocol of the systematic review does not require ethical approval because it does not involve humans. This article will be published in peer-reviewed journals and presented at relevant conferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.