This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Ten-eleven translocation (TET) enzymes that oxidize a 5-methylcytosine (5mC) to yield 5-hydroxymethylcytosine (5hmC) have been responsible for fine-tuning methylation patterns and exhibit role in epigenetic modifications. Chrysin, a natural flavone frequently present in honey, has been recognized to exhibit anti-tumor properties. In this study, we investigated the effects of Chrysin in the expression pattern of TET proteins in gastric cancer (GC) cells. Materials and Methods: Using qRT-PCR and Western blot analysis, we analyzed the expression of TET1 in GC cells in vitro following treatment with Chrysin. Immunofluorescence staining detected the expression levels of 5mC and 5hmC. Flow cytometry, wound healing, and Matrigel invasion assays were performed to determine cell proliferation, cell cycle, apoptosis, and migration and invasion of GC cells following treatment with Chrysin, si-TET1, and TET1-KO. Furthermore, a xenograft model was developed to analyze the expression pattern of TET1 on tumor development in vivo. Results: qRT-PCR and Western blot assays indicated that treatment with Chrysin significantly promoted the expression of TET1 in GC cells. Immunofluorescence study further confirmed that TET1 and 5hmC levels were significantly enhanced following treatment with Chrysin in MKN45 cells. Moreover, our results suggested that Chrysin could noticeably induce cell apoptosis and inhibit cell migration and invasion. Further, knockdown and overexpression of TET1 were conducted to investigate whether TET1 expression affected cell apoptosis, and cell migration and invasion in MKN45 cells. The results indicated that overexpression of TET1 markedly promoted cell apoptosis and inhibited cell migration and invasion. Furthermore, the TET1 gene knocked out was generated using the CRISPR/Cas9 system. Our data suggested that TET1 expression was associated with GC tumor growth in vivo. Conclusion: This study indicated that Chrysin exerted anti-tumor effects through the regulation of TET1 expression in GC and presented TET1 as a novel promising therapeutic target for GC therapy.
Aberrant epigenetic modification, including N6-methylation of adenosine (m6A), has been frequently reported in embryos derived from parthenogenetic activation (PA). However, the role of Igf2bp1 expression pattern in m6A modification and the mechanism through which Igf2bp1 function is regulated in PA embryos remains elusive. Therefore, in this study, using si-Igf2bp1 and betaine (N,N,N-trimethylglycine, a major methyl donor), we investigated the effect of Igf2bp1 expression in m6A modification on the development of PA embryos. The results indicated that the down-regulation of Igf2bp1 reduced the cleavage and blastula rates of PA embryos. Moreover, m6A expression level was markedly down-regulated following microinjection with si-Igf2bp1. However, the treatment with betaine could significantly restore the m6A level. Further bioinformatics analysis revealed Igf2bp1 as the putative target of microRNA 670 (miR-670). Thus, to confirm this finding, mimics and inhibitor of miR-670 were microinjected into PA embryos. The results demonstrated that miR-670 inhibitor augmented the expression of Igf2bp1 and rescued cleavage and blastula rates. In addition, the miR-670 inhibitor promoted the m6A expression level. TUNEL assay revealed a loss of expression of Igf2bp1 induced cell apoptosis in PA embryos. Taken together, these results demonstrated that miR-670-3p functions as the regulator of Igf2bp1 expression and plays a crucial role in PA development through m6A modification.
BackgroundChrysin is a natural flavone that is present in honey and has exhibited anti-tumor properties. It has been widely studied as a therapeutic agent for the treatment of various types of cancers. The objectives of this present study were to elucidate how chrysin regulates non-coding RNA expression to exert anti-tumor effects in gastric cancer cells.MethodsThrough the use of RNA sequencing, we investigated the differential expression of mRNAs in gastric cancer cells treated with chrysin. Furthermore, COPB2, H19 and let-7a overexpression and knockdown were conducted. Other features, including cell growth, apoptosis, migration and invasion, were also analyzed. Knockout of the COPB2 gene was generated using the CRISPR/Cas9 system for tumor growth analysis in vivo.ResultsOur results identified COPB2 as a differentially expressed mRNA that is down-regulated following treatment with chrysin. Moreover, the results showed that chrysin can induce cellular apoptosis and inhibit cell migration and invasion. To further determine the underlying mechanism of COPB2 expression, we investigated the expression of the long non-coding RNA (lncRNA) H19 and microRNA let-7a. Our results showed that treatment with chrysin significantly increased let-7a expression and reduced the expression of H19 and COPB2. In addition, our results demonstrated that reduced expression of COPB2 markedly promotes cell apoptosis. Finally, in vivo data suggested that COPB2 expression is related to tumor growth.ConclusionsThis study suggests that chrysin exhibited anti-tumor effects through a H19/let-7a/COPB2 axis.
Methylation of the adenine base at the nitrogen 6 position (m6A) is the most common post-transcriptional epigenetic modification of RNA, and it plays a very important role in regulating gene expression. To investigate the role of m6A methylation in the expression of non-coding RNA and miRNA, we used a system of adenine base editors (ABEs). Here, we mutated regions up- and downstream of miRNA 675 m6A modification sites in the H19 locus using HEK293T, L02, MHCC97L, MHCC97H, A549, and SGC-7901 cells. Our results showed that a T–A base transversion had occurred in all cell lines. Moreover, mutation of the regions upstream of the miRNA 675 m6A modification site led to reduced expression of H19 and the induction of cell apoptosis in HEK293T cells. To further confirm our results, L02 and MHCC97L cells were detected using ABEs system. The results indicated increased cell apoptosis and reduced expression of miR675 as well as H19. To confirm the relationship between H19 and miR675 expression, overexpression and knockdown studies were performed. The results showed that reduced HI9 expression induced cell apoptosis through miR675. Taken together, these results indicate that m6A modification can regulate the expression of H19 and miR675 which induce cell apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.