In the Internet of Things (IoT), aggregation and release of real-time data can often be used for mining more useful information so as to make humans lives more convenient and efficient. However, privacy disclosure is one of the most concerning issues because sensitive information usually comes with users in aggregated data. Thus, various data encryption technologies have emerged to achieve privacy preserving. These technologies may not only introduce complicated computing and high communication overhead but also do not work on the protection of endless data streams. Considering these challenges, we propose a real-time stream data aggregation framework with adaptive -event differential privacy (Re-ADP). Based on adaptive -event differential privacy, the framework can protect any data collected by sensors over any dynamic time stamp successively over infinite stream. It is designed for the fog computing architecture that dramatically extends the cloud computing to the edge of networks. In our proposed framework, fog servers will only send aggregated secure data to cloud servers, which can relieve the computing overhead of cloud servers, improve communication efficiency, and protect data privacy. Finally, experimental results demonstrate that our framework outperforms the existing methods and improves data availability with stronger privacy preserving.
Although massive real-time data collected from users can provide benefits to improve the quality of human daily lives, it is possible to expose users' privacy. -differential privacy is a notable model to provide strong privacy preserving in statistics. The existing works highlight ω-event differential privacy with a fixed window size, which may not be suitable for many practical scenarios. In view of this issue, we explore a real-time scheme with adaptive ω-event for differentially private time-series publishing (ADP) in this paper. In specific, we define a novel notion, Quality of Privacy (QoP) to measure both the utility of the released statistics and the performance of privacy preserving. According to this, we present an adaptive ω-event differential privacy model that can provide privacy protection with higher accuracy and better privacy protection effect. In addition, we also design a smart grouping mechanism to improve the grouping performance, and then improve the availability of publishing statistics. Finally, comparing with the existing schemes, we exploit real-world and synthetic datasets to conduct several experiments to demonstrate the superior performance of the ADP scheme.1. Introduction. Recently, context-aware smart devices are experiencing an unprecedented surge in smart cyber-physical networks [39]. These devices can achieve ubiquitous connectivity and powerful raw data-gathering capabilities via humancentric and device-to-device (D2D)-based applications [31]. Using data mining technologies, we then can discover knowledge from huge amounts of raw data. Accordingly, we learn that the technology may provides great benefits to push against our cognition of human behavior and to improve the quality of our lives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.