Abstract-In this paper, a hierarchical management system is proposed to integrate electric vehicles (EVs) into a distribution grid. Three types of actors are included in the system: Distribution system operators (DSOs), Fleet operators (FOs) and EV owners. In contrast to a typical hierarchical control system where the upper level controller directly controls the lower level subordinated nodes, this study aims to integrate two common indirect control methods:market-based control and price-based control into the hierarchical electric vehicles management system. Specifically, on the lower level of the hierarchy, the FOs coordinate the charging behaviors of their EV users using a price-based control method. A parametric utility model is used on the lower level to characterize price elasticity of electric vehicles and thus used by the FO to coordinate the individual EV charging. On the upper level of the hierarchy, the distribution system operator uses the market-based control strategy to coordinate the limited power capacity of power transformer with fleet operators. To facilitate the application of the two indirect control methods into the system, a model describing decision tasks in control is used to specify the essential functions that are needed in the control system. The simulations illustrate the effectiveness of the proposed solutions.
Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.