Intracerebral hemorrhage (ICH) has poor outcomes due to high mortality and morbidity, but until now, the effective treatments remain limited. MicroRNAs (miRNAs) are vital regulators of gene expression and demonstrated to be linked to the pathogenesis of various central nervous system (CNS) diseases. Exosomes are considered as cell-to-cell communication vectors and secreted largely by mesenchymal stromal cells (MSCs). The present study investigated the role of miR-133b delivered by exosomes secreted from MSCs to brain tissues in rats after ICH. An autologous arterial blood ICH model in adult male Sprague-Dawley (SD) rats was used in this study. At 72 h after transfection with miR-133b mimics in MSCs, miR-133b-modified MSC-derived exosomes were collected from medium of MSCs and then injected to rats via tail vein. The levels of miR-133b in secreted exosomes and brain tissues of rats in various groups and the levels of RhoA, phosphorylations of extracellular signal regulating kinase (ERK1/2), and cAMP response element-binding protein (CREB) were detected by real-time PCR and western blot analysis, respectively. The effects of miR-133b on neuronal apoptosis and degeneration were respectively evaluated by TUNEL and fluoro-jade B staining. The miR-133b levels were reduced in brain tissues of rats at 24 h and peaked at 72 h after ICH. At 24 h after miR-133b-modified exosome administration, the level of miR-133b was significantly increased, while the apoptotic and neurodegenerative neurons were obviously reduced in brain tissues after ICH. The results of western blot analysis showed that miR-133b modified exosomes treatment remarkably suppressed RhoA expression and activated ERK1/2/CREB in brain tissues after ICH. Collectively, our investigation suggested that exosomes derived from miR-133b modified MSCs exhibited neuroprotective role for anti-apoptotic effect of miR-133b mediating RhoA and ERK1/2/CREB in rats after ICH.
BackgroundTamoxifen, a selective estrogen receptor modulator, has successfully been used to treat several animal models of brain injury, but the underlying mechanisms remain unclear. This study was undertaken to evaluate the effect of tamoxifen on the toll-like receptor 4 (TLR4)- and nuclear factor-κB (NF-κB)-related inflammatory signaling pathway and secondary brain injury in rats after subarachnoid hemorrhage (SAH).MethodsAdult male Sprague-Dawley rats were divided into four groups: (1) control group (n = 28); (2) SAH group (n = 28); (3) SAH + vehicle group (n = 28); and (4) SAH + tamoxifen group (n = 28). All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once on day 0. In SAH + tamoxifen group, tamoxifen was administered intraperitoneally at a dose of 5 mg/kg at 2 h, 12 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated at 48 h after SAH. In the second set of experiments, the Morris water maze was used to investigate cognitive and memory changes.ResultsWe found that treatment with tamoxifen markedly inhibited the protein expressions of TLR4, NF-κB and the downstream inflammatory agents, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and intercellular adhesion molecule-1 (ICAM-1). Administration of tamoxifen following SAH significantly ameliorated the early brain injury (EBI), such as brain edema, blood-brain barrier (BBB) impairment, and clinical behavior scale. Learning deficits induced by SAH were markedly alleviated after tamoxifen treatment.ConclusionsPost-SAH tamoxifen administration may attenuate TLR4/NF-kappaB-mediated inflammatory response in the rat brain and result in abatement of the development of EBI and cognitive dysfunction after SAH.
The annual incidence of subarachnoid hemorrhage (SAH) caused by intracranial aneurysm rupture is approximately 10.5/10 million people in China, making SAH the third most frequently occurring hemorrhage of the intracranial type after cerebral embolism and hypertensive intracerebral hemorrhage. SAH caused by ruptured aneurysm leads to a mortality rate as high as 67 %, and, because of the sudden onset of this disease, approximately 12-15 % of patients die before they can receive effective treatment. Early brain injury (EBI) is the brain damage occurring within the first 72 h after SAH. Two-thirds of mortality caused by SAH occurs within 48 h, mainly as a result of EBI. With the development of molecular biology and medicine microscopy techniques, various signaling pathways involved in EBI after SAH have been revealed. Understanding these signaling pathways may help clinicians treat EBI after SAH and improve long-term prognosis of SAH patients. This chapter summarizes several important signaling pathways implicated in EBI caused by SAH.
In order to construct a full-length infectious cDNA clone of porcine astrovirus, three fragments covering the complete genome of PAstV1-GX1 strain were amplified by RT-PCR. All three PCR-amplified fragments were cloned into T-Vector pMD19 (Simple), and subsequently assembled into a full-length cDNA clone by subcloning. A silent nucleotide change creating a PstI site was engineered into the full-length cDNA clone to distinguish the rescued virus from the parental virus. Upon transfection of BHK-21 cells with the in vitro transcripts of both the original and constructed cDNAs, typical cytopathic effects were observed on PK-15 cells after serial passaging of the cell supernatant. The construction and recovery of the infectious cDNA clone of porcine astrovirus will provide a valuable experimental system to study the genome function and pathogenesis of astroviruses.
Background: The role of intrathecal fibrinolysis for the treatment of patients with aneurysmal subarachnoid hemorrhage (aSAH) has been widely investigated; however, the results have been contradictory. In our study, we conducted a meta-analysis to evaluate the safety and efficacy of intrathecal (intracisternal or intraventricular) fibrinolysis for aSAH. Methods: PubMed, Web of Science, Embase, Medline, and the Cochrane library databases were searched up to February 1, 2019. The outcomes analyzed were neurologic recovery, delayed ischemic neurologic deficit (DIND), mortality, and the incidence of chronic hydrocephalus and hemorrhage. Results: A total of 21 studies comprising 1,373 patients were analyzed, including nine randomized controlled trials (RCTs) and 12 non-RCTs. The results showed that intracisternal fibrinolysis significantly decreased poor neurologic outcomes (RR = 0.62, 95% CI = 0.50–0.76, P < 0.001) and reduced the incidence of DIND (RR = 0.52, 95% CI = 0.41–0.65, P <0.001), chronic hydrocephalus (RR = 0.59, 95% CI = 0.42–0.82, P = 0.002) and mortality (RR = 0.58, 95% CI = 0.37, 0.93, P = 0.02). There was no significant difference in the occurrence of hemorrhage. Moreover, the results of the Egger test and Begg's funnel plot showed no evidence of publication bias. Conclusions: Current evidence suggests that intracisternal fibrinolysis has beneficial effects on the clinical outcomes of patients with aSAH. However, further well-designed randomized trials are needed to confirm the efficacy and safety of intracisternal fibrinolysis for the treatment of aSAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.