In energy harvesting wireless sensor networks (EHWSNs), the energy tension of the network can be relieved by obtaining the energy from the surrounding environment, but the cost on hardware cannot be ignored. Therefore, how to minimize the cost of energy harvesting hardware to reduce the network deployment cost, and further optimize the network performance, is still a challenging issue in EHWSNs. In this paper, an energy conserving and transmission radius adaptive (ECTRA) scheme is proposed to reduce the cost and optimize the performance of solar-based EHWSNs. There are two main innovations of the ECTRA scheme. Firstly, an energy conserving approach is proposed to conserve energy and avoid outage for the nodes in hotspots, which are the bottleneck of the whole network. The novelty of this scheme is adaptively rotating the transmission radius. In this way, the nodes with maximum energy consumption are rotated, balancing energy consumption between nodes and reducing the maximum energy consumption in the network. Therefore, the battery storage capacity of nodes and the cost on hardware. Secondly, the ECTRA scheme selects a larger transmission radius for rotation when the node can absorb enough energy from the surroundings. The advantages of using this method are: (a) reducing the energy consumption of nodes in near-sink areas, thereby reducing the maximum energy consumption and allowing the node of the hotspot area to conserve energy, in order to prevent the node from outage. Hence, the network deployment costs can be further reduced; (b) reducing the network delay. When a larger transmission radius is used to transmit data in the network, fewer hops are needed by data packet to the sink. After the theoretical analyses, the results show the following advantages compared with traditional method. Firstly, the ECTRA scheme can effectively reduce deployment costs by 29.58% without effecting the network performance as shown in experiment analysis; Secondly, the ECTRA scheme can effectively reduce network data transmission delay by 44–71%; Thirdly, the ECTRA scheme shows a better balance in energy consumption and the maximum energy consumption is reduced by 27.89%; And lastly, the energy utilization rate is effectively improved by 30.09–55.48%.
Hundreds of thousands of ubiquitous sensing (US) devices have provided an enormous number of data for Information-Centric Networking (ICN), which is an emerging network architecture that has the potential to solve a great variety of issues faced by the traditional network. A Caching Joint Shortcut Routing (CJSR) scheme is proposed in this paper to improve the Quality of service (QoS) for ICN. The CJSR scheme mainly has two innovations which are different from other in-network caching schemes: (1) Two routing shortcuts are set up to reduce the length of routing paths. Because of some inconvenient transmission processes, the routing paths of previous schemes are prolonged, and users can only request data from Data Centers (DCs) until the data have been uploaded from Data Producers (DPs) to DCs. Hence, the first kind of shortcut is built from DPs to users directly. This shortcut could release the burden of whole network and reduce delay. Moreover, in the second shortcut routing method, a Content Router (CR) which could yield shorter length of uploading routing path from DPs to DCs is chosen, and then data packets are uploaded through this chosen CR. In this method, the uploading path shares some segments with the pre-caching path, thus the overall length of routing paths is reduced. (2) The second innovation of the CJSR scheme is that a cooperative pre-caching mechanism is proposed so that QoS could have a further increase. Besides being used in downloading routing, the pre-caching mechanism can also be used when data packets are uploaded towards DCs. Combining uploading and downloading pre-caching, the cooperative pre-caching mechanism exhibits high performance in different situations. Furthermore, to address the scarcity of storage size, an algorithm that could make use of storage from idle CRs is proposed. After comparing the proposed scheme with five existing schemes via simulations, experiments results reveal that the CJSR scheme could reduce the total number of processed interest packets by 54.8%, enhance the cache hits of each CR and reduce the number of total hop counts by 51.6% and cut down the length of routing path for users to obtain their interested data by 28.6–85.7% compared with the traditional NDN scheme. Moreover, the length of uploading routing path could be decreased by 8.3–33.3%.
Data collected from nature is usually unlabeled, and it is difficult to be used directly. This issue is well addressed by crowdsourcing, which provides a reasonable way for effectively using these unlabeled data. Generally, workers in crowdsourcing tasks are not professionals, so it is hard to obtain high-quality labels. To address this issue, a robust sparse weighted classification algorithm is proposed, which try to adjust the samples that are not correctly classified in the original lables as much as possible. Specifically, we evalute the ability of different workers(indicator weight matrix) to accurately label different samples by fitting the real data matrix to its weighted reconstruction matrix. And then, l 2,1 -norm and worker labeling ability similarity matrix are added, and negative effects of some bad workers are eliminated through the row sparsity property of l 2,1 -norm. Finally, the optimal indicator weight matrix is obtained by optimizing the two matrices in the objective function simultaneously. Therefore, the obtained optimal indicator weight matrix takes the similarity of worker labeling ability into consideration, and infers all the predicted labels. The results on synthetic and real data sets demonstrate that our algorithm is superior to other state-of-the-art methods.
SimRank is an attractive link-based similarity measure used in fertile fields of Web search and sociometry. However, the existing deterministic method by Kusumoto et al. [ 24 ] for retrieving SimRank does not always produce high-quality similarity results, as it fails to accurately obtain diagonal correction matrix D . Moreover, SimRank has a “connectivity trait” problem: increasing the number of paths between a pair of nodes would decrease its similarity score. The best-known remedy, SimRank++ [ 1 ], cannot completely fix this problem, since its score would still be zero if there are no common in-neighbors between two nodes. In this article, we study fast high-quality link-based similarity search on billion-scale graphs. (1) We first devise a “varied- D ” method to accurately compute SimRank in linear memory. We also aggregate duplicate computations, which reduces the time of [ 24 ] from quadratic to linear in the number of iterations. (2) We propose a novel “cosine-based” SimRank model to circumvent the “connectivity trait” problem. (3) To substantially speed up the partial-pairs “cosine-based” SimRank search on large graphs, we devise an efficient dimensionality reduction algorithm, PSR # , with guaranteed accuracy. (4) We give mathematical insights to the semantic difference between SimRank and its variant, and correct an argument in [ 24 ] that “if D is replaced by a scaled identity matrix (1-Ɣ)I, their top-K rankings will not be affected much”. (5) We propose a novel method that can accurately convert from Li et al. SimRank ~{S} to Jeh and Widom’s SimRank S . (6) We propose GSR # , a generalisation of our “cosine-based” SimRank model, to quantify pairwise similarities across two distinct graphs, unlike SimRank that would assess nodes across two graphs as completely dissimilar. Extensive experiments on various datasets demonstrate the superiority of our proposed approaches in terms of high search quality, computational efficiency, accuracy, and scalability on billion-edge graphs.
Visual question answering (VQA) is regarded as a multi-modal fine-grained feature fusion task, which requires the construction of multi-level and omnidirectional relations between nodes. One main solution is the composite attention model which is composed of co-attention (CA) and self-attention(SA). However, the existing composite models only consider the stack of single attention blocks, lack of path-wise historical memory, and overall adjustments. We propose a path attention memory network (PAM) to construct a more robust composite attention model. After each single-hop attention block (SA or CA), the importance of the cumulative nodes is used to calibrate the signal strength of nodes’ features. Four memoried single-hop attention matrices are used to obtain the path-wise co-attention matrix of path-wise attention (PA); therefore, the PA block is capable of synthesizing and strengthening the learning effect on the whole path. Moreover, we use guard gates of the target modal to check the source modal values in CA and conditioning gates of another modal to guide the query and key of the current modal in SA. The proposed PAM is beneficial to construct a robust multi-hop neighborhood relationship between visual and language and achieves excellent performance on both VQA2.0 and VQA-CP V2 datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.