Membranes are playing paramount roles in the sustainable development of myriad fields such as energy, environmental and resource management, and human health. However, the unalterable pore size and surface properties of traditional porous membranes restrict their efficient applications. The performances of traditional membranes will be weakened upon unavoidable membrane fouling, and they cannot be applied to cases where self-regulated permeability and selectivity are required. Inspired by natural cell membranes with stimuli-responsive channels, artificial stimuli-responsive smart gating membranes are developed by chemically/physically incorporating stimuli-responsive materials as functional gates into traditional porous membranes, to provide advanced functions and enhanced performances for breaking the bottlenecks of traditional membrane technologies. Smart gating membranes, integrating the advantages of traditional porous membrane substrates and smart functional gates, can self-regulate their permeability and selectivity via the flexible adjustment of pore sizes and surface properties based on the "open/close" switch of the smart gates in response to environmental stimuli. This tutorial review summarizes the recent developments in stimuli-responsive smart gating membranes, including the design strategies and the fabrication strategies that are based on the introduction of the stimuli-responsive gates after or during membrane formation, and the positively and negatively responsive gating models of versatile stimuli-responsive smart gating membranes, as well as the advanced applications of smart gating membranes for regulating substance concentration in reactors, controlling the release rate of drugs, separating active molecules based on size or affinity, and the self-cleaning of membrane surfaces. With self-regulated membrane performances, smart gating membranes show great power for use in global sustainable development.
Title: Controllable microfl uidic production of multicomponent multiple emulsionsA hierarchical and scalable microfl uidic device enables highly controlled generation of multicomponent multiple emulsions with exceptionally diverse structures. The number, ratio and size of droplets, each with distinct contents being independently co-encapsulated in the same level, can be precisely controlled.
A novel type of core-shell chitosan microcapsule with programmed sequential drug release is developed by the microfluidic technique for acute gastrosis therapy. The microcapsule is composed of a cross-linked chitosan hydrogel shell and an oily core containing both free drug molecules and drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Before exposure to acid stimulus, the resultant microcapsules can keep their structural integrity without leakage of the encapsulated substances. Upon acid-triggering, the microcapsules first achieve burst release due to the acid-induced decomposition of the chitosan shell. The encapsulated free drug molecules and drug-loaded PLGA nanoparticles are rapidly released within 60 s. Next, the drugs loaded in the PLGA nanoparticles are slowly released for several days to achieve sustained release based on the synergistic effect of drug diffusion and PLGA degradation. Such core-shell chitosan microcapsules with programmed sequential drug release are promising for rational drug delivery and controlled-release for the treatment of acute gastritis. In addition, the microcapsule systems with programmed sequential release provide more versatility for controlled release in biomedical applications.
In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two “legs” for walking. The hydrogel walkers can reversibly bend and stretch via repeated “on/off” electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two “legs” to achieve one-directional walking motion on a rough surface via repeated “on/off” electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation.
A simple and flexible approach is developed for controllable fabrication of spider-silk-like microfibers with tunable magnetic spindle-knots from biocompatible calcium alginate for controlled 3D assembly and water collection. Liquid jet templates with volatile oil drops containing magnetic Fe3O4 nanoparticles are generated from microfluidics for fabricating spider-silk-like microfibers. The structure of jet templates can be precisely adjusted by simply changing the flow rates to tailor the structures of the resultant spider-silk-like microfibers. The microfibers can be well manipulated by external magnetic fields for controllably moving, and patterning and assembling into different 2D and 3D structures. Moreover, the dehydrated spider-silk-like microfibers, with magnetic spindle-knots for collecting water drops, can be controllably assembled into spider-web-like structures for excellent water collection. These spider-silk-like microfibers are promising as functional building blocks for engineering complex 3D scaffolds for water collection, cell culture, and tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.