A simple and flexible approach is developed for controllable fabrication of spider-silk-like microfibers with tunable magnetic spindle-knots from biocompatible calcium alginate for controlled 3D assembly and water collection. Liquid jet templates with volatile oil drops containing magnetic Fe3O4 nanoparticles are generated from microfluidics for fabricating spider-silk-like microfibers. The structure of jet templates can be precisely adjusted by simply changing the flow rates to tailor the structures of the resultant spider-silk-like microfibers. The microfibers can be well manipulated by external magnetic fields for controllably moving, and patterning and assembling into different 2D and 3D structures. Moreover, the dehydrated spider-silk-like microfibers, with magnetic spindle-knots for collecting water drops, can be controllably assembled into spider-web-like structures for excellent water collection. These spider-silk-like microfibers are promising as functional building blocks for engineering complex 3D scaffolds for water collection, cell culture, and tissue engineering.
Chitosan microfibers with controllable internals from tubular to peapod-like structures are fabricated from microfluidics for microfluid transport and synergistic encapsulation.
A facile and flexible approach is developed for controllable fabrication of novel multiple-compartmental calcium alginate capsules from all-aqueous droplet templates with combined coextrusion minifluidic devices for isolated coencapsulation and synergistic release of diverse incompatible components. The multicompartmental capsules exhibit distinct compartments, each of which is covered by a distinct part of a heterogeneous shell. The volume and number of multiple compartments can be well-controlled by adjusting flow rates and device numbers for isolated and optimized encapsulation of different components, while the composition of different part of the heterogeneous shell can be individually tailored by changing the composition of droplet template for flexibly tuning the release behavior of each component. Two combined devices are first used to fabricate dual-compartmental capsules and then scaled up to fabricate more complex triple-compartmental capsules for coencapsulation. The synergistic release properties are demonstrated by using dual-compartmental capsules, which contain one-half shell with a constant release rate and the other half shell with a temperature-dependent release rate. Such a heterogeneous shell provides more flexibilities for synergistic release with controllable release sequence and release rates to achieve advanced and optimized synergistic efficacy. The multicompartmental capsules show high potential for applications such as drug codelivery, confined reactions, enzyme immobilizations, and cell cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.