The growing risk of new variants of the influenza A virus is the most significant to public health. The risk imposed from new variants may have been lethal, as witnessed in the year 2009. Even though the improvement in predicting antigenicity of influenza viruses has rapidly progressed, few studies employed deep learning methodologies. The most recent literature mostly relied on classification techniques, while a model that generates the HA protein of the antigenic variant is not developed. However, the antigenic pair of influenza virus A can be determined in a laboratory setup, the process needs a tremendous amount of time and labor. Antigenic shift and drift which are caused by changes in surface protein favored the influenza A virus in evading immunity. The high frequency of the minor changes in the surface protein poses a challenge to identifying the antigenic variant of an emerging virus. These changes slow down vaccine selection and the manufacturing process. In this vein, the proposed model could help save the time and efforts exerted to identify the antigenic pair of the influenza virus. The proposed model utilized an end-to-end learning methodology relying on deep sequence-to-sequence architecture to generate the antigenic variant of a given influenza A virus using surface protein. Employing the BLEU score to evaluate the generated HA protein of the antigenic variant of influenza virus A against the actual variant, the proposed model achieved a mean accuracy of 97.57%.
Abstract-This paper studied the coal mine safety supervision technology systematically, and proposed an overall structure of an integrated safety supervision system with environment supervision, mine equipment monitoring and person / vehicle location management functions. Then, it intensively analyzed the functional requirements of the system hardcoresupervision substation; and carried out the HW&SW design and development of the supervision substation device which includes CAN bus interface, ZigBee coordinator and various function modules. Finally, by building up a simulation test environment, the performance of the system structure and main functions of the substation device were validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.