This study examined the hypotheses that soil microbial community composition and catabolic activity would significantly degenerated by consecutive monoculture in Chinese fir plantations. The phospholipid fatty acids (PLFA) and community level physiological profiles (CLPP) methods were used to assess the variations of soil microbial community among the first rotation Chinese fir plantation (FCP), the second rotation plantation (SCP) and the third rotation plantation (TCP). The total content of PLFA biomarkers was highest in FCP, followed by SCP, and TCP was the least detected. Conversely, the fungi/bacteria ratio significantly increased in the SCP and TCP soils. The average well-color development (AWCD) values significantly decreased (FCP > SCP > TCP). However, the sum of AWCD values of amino acids, carboxylic acids and phenolic compounds were higher significantly in the SCP and TCP soils than FCP soils, suggesting that the microflora feeding on acids gradually became predominant in the continuous monoculture plantation soils. Soil C/N ratio was one of the most important factors to soil microbial diversity. Both the PLFA and CLPP results illustrated the long-term pure plantation pattern exacerbated the microecological imbalance in the rhizospheric soils of Chinese fir, and markedly decreased the soil microbial community diversity and metabolic activity.
This review describes the characteristics and hot spots of wetland research, including biodiversity protection of wetland, management and restoration of wetland, function and process of wetland, and the theories, methods and scales of landscape ecology. Moreover, some deficits of landscape ecology theory and method were discussed, and the application of landscape ecology to research on wetlands was reviewed specially, involving in the application of landscape structure principle, landscape pattern, and scale and hierarchy theory. In conclusion, landscape ecology plays an enlightening and guiding function on the comprehensive research of wetlands at multi-scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.