Triple-negative breast cancer (TNBC) is a particularly aggressive subtype known for its extremely high drug resistance, progression, poor prognosis, and lack of clear therapeutic targets. Researchers are aiming to advance TNBC treatment worldwide. In the past 2–3 years, more positive results have emerged in the clinical research on TNBC treatment. Based on the results, several impressive drugs have been approved to benefit patients with TNBC, including the PARP inhibitors olaparib and talazoparib for germline BRCA mutation-associated breast cancer (gBRCAm-BC) and immunotherapy using the checkpoint inhibitor atezolizumab in combination with nab-paclitaxel for programmed cell death-ligand 1-positive (PD-L1+) advanced TNBC. Although neoadjuvant therapy has focused on combinations of systemic agents to optimize pathologically complete response, metastatic TNBC still has a poor prognosis. Innovative multidrug combination systemic therapies based on neoadjuvants and adjuvants have led to significant improvements in outcomes, particularly over the past decade.
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations.
BackgroundFibrosis is the common pathological feature in most kinds of chronic kidney disease (CKD). TGF-β/Smads signaling is the master pathway regulating kidney fibrosis pathogenesis, in which Smad3 acts as the integrator of various pro-fibrosis signals. In this study, we analyzed the role of SIS3, a specific inhibitor of Smad3, in mouse unilateral ureteral obstruction (UUO) kidneys.Material/MethodsUUO mice were intraperitoneally injected with 0.2 mg/kg/day or 2 mg/kg/day of SIS3 or control saline for 7 days, followed by analysis of structure injury, fibrosis status, inflammation, apoptosis, and TGF-β/Smads signaling activity.ResultsOur results indicated that SIS3 treatment dosage-dependently relieved the gross structure injury and tubular necrosis in UUO kidneys. Masson staining, immunohistochemistry, and real-time PCR showed significantly decreased extracellular matrix deposition, fibronectin staining intensity, and RNA levels of collagen I and collagen III in SIS3-treated UUO kidneys. SIS3 treatment also suppressed the activation of myofibroblasts, as evidenced by decreased expression levels of α-SMA and vimentin in UUO kidneys. The TGF-β/Smads signaling activity analysis showed that SIS3 inhibited the phosphorylation of Smad3 but not Smad2 and decreased the protein level of TGF-β1, suggesting specific inhibition of the TGF-β/Smad3 pathway in UUO kidneys. Furthermore, SIS3 treatment also ameliorated the increased pro-inflammatory TNF-α and COX2 in UUO kidneys and circulating IL-1β in UUO mice, and inhibited caspase-3 activity and the number of apoptotic cells.ConclusionsSIS3 ameliorated fibrosis, apoptosis, and inflammation through inhibition of TGF-β/Smad3 signaling in UUO mouse kidneys.
This study examined the hypotheses that soil microbial community composition and catabolic activity would significantly degenerated by consecutive monoculture in Chinese fir plantations. The phospholipid fatty acids (PLFA) and community level physiological profiles (CLPP) methods were used to assess the variations of soil microbial community among the first rotation Chinese fir plantation (FCP), the second rotation plantation (SCP) and the third rotation plantation (TCP). The total content of PLFA biomarkers was highest in FCP, followed by SCP, and TCP was the least detected. Conversely, the fungi/bacteria ratio significantly increased in the SCP and TCP soils. The average well-color development (AWCD) values significantly decreased (FCP > SCP > TCP). However, the sum of AWCD values of amino acids, carboxylic acids and phenolic compounds were higher significantly in the SCP and TCP soils than FCP soils, suggesting that the microflora feeding on acids gradually became predominant in the continuous monoculture plantation soils. Soil C/N ratio was one of the most important factors to soil microbial diversity. Both the PLFA and CLPP results illustrated the long-term pure plantation pattern exacerbated the microecological imbalance in the rhizospheric soils of Chinese fir, and markedly decreased the soil microbial community diversity and metabolic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.