Multi-object tracking (MOT) is a topic of great interest in the field of computer vision, which is essential in smart behavior-analysis systems for healthcare, such as human-flow monitoring, crime analysis, and behavior warnings. Most MOT methods achieve stability by combining object-detection and re-identification networks. However, MOT requires high efficiency and accuracy in complex environments with occlusions and interference. This often increases the algorithm’s complexity, affects the speed of tracking calculations, and reduces real-time performance. In this paper, we present an improved MOT method combining an attention mechanism and occlusion sensing as a solution. A convolutional block attention module (CBAM) calculates the weights of space and channel attention from the feature map. The attention weights are used to fuse the feature maps to extract adaptively robust object representations. An occlusion-sensing module detects an object’s occlusion, and the appearance characteristics of an occluded object are not updated. This can enhance the model’s ability to extract object features and improve appearance feature pollution caused by the short-term occlusion of an object. Experiments on public datasets demonstrate the competitive performance of the proposed method compared with the state-of-the-art MOT methods. The experimental results show that our method has powerful data association capability, e.g., 73.2% MOTA and 73.9% IDF1 on the MOT17 dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.