Modern programming languages, ranging from Haskell and ML, to JavaScript, C# and Java, all make extensive use of higher-order state. This paper advocates a new verification methodology for higher-order stateful programs, based on a new monad of predicate transformers called the Dijkstra monad.Using the Dijkstra monad has a number of benefits. First, the monad naturally yields a weakest pre-condition calculus. Second, the computed specifications are structurally simpler in several ways, e.g., single-state post-conditions are sufficient (rather than the more complex two-state post-conditions). Finally, the monad can easily be varied to handle features like exceptions and heap invariants, while retaining the same type inference algorithm.We implement the Dijkstra monad and its type inference algorithm for the F programming language. Our most extensive case study evaluates the Dijkstra monad and its F implementation by using it to verify JavaScript programs.Specifically, we describe a tool chain that translates programs in a subset of JavaScript decorated with assertions and loop invariants to F . Once in F , our type inference algorithm computes verification conditions and automatically discharges their proofs using an SMT solver. We use our tools to prove that a core model of the JavaScript runtime in F respects various invariants and that a suite of JavaScript source programs are free of runtime errors.
Many tools allow programmers to develop applications in highlevel languages and deploy them in web browsers via compilation to JavaScript. While practical and widely used, these compilers are ad hoc: no guarantee is provided on their correctness for whole programs, nor their security for programs executed within arbitrary JavaScript contexts. This paper presents a compiler with such guarantees. We compile an ML-like language with higher-order functions and references to JavaScript, while preserving all source program properties. Relying on type-based invariants and applicative bisimilarity, we show full abstraction: two programs are equivalent in all source contexts if and only if their wrapped translations are equivalent in all JavaScript contexts. We evaluate our compiler on sample programs, including a series of secure libraries.This version supercedes the version in the official proceedings of POPL '13. In particular, we fix upfun in Figure 4, rectifying an experimental error that rendered the previous upfun an insufficient protection on several popular browsers. The new version is confirmed to work on IE 9, IE 10, Chrome 23, and Firefox 16. Thanks to Karthik Bhargavan for pointing out the error.
JavaScript's flexible semantics makes writing correct code hard and writing secure code extremely difficult. To address the former problem, various forms of gradual typing have been proposed, such as Closure and TypeScript. However, supporting all common programming idioms is not easy; for example, TypeScript deliberately gives up type soundness for programming convenience. In this paper, we propose a gradual type system and implementation techniques that provide important safety and security guarantees. We present TS# , a gradual type system and source-to-source compiler for JavaScript. In contrast to prior gradual type systems, TS# features full runtime reflection over three kinds of types: (1) simple types for higher-order functions, recursive datatypes and dictionary-based extensible records; (2) the type any, for dynamically type-safe TS# expressions; and (3) the type un, for untrusted, potentially malicious JavaScript contexts in which TS# is embedded. After type-checking, the compiler instruments the program with various checks to ensure the type safety of TS# despite its interactions with arbitrary JavaScript contexts, which are free to use eval, stack walks, prototype customizations, and other offensive features. The proof of our main theorem employs a form of type-preserving compilation, wherein we prove all the runtime invariants of the translation of TS# to JavaScript by showing that translated programs are well-typed in JS# , a previously proposed dependently typed language for proving functional correctness of JavaScript programs. We describe a prototype compiler, a secure runtime, and sample applications for TS#. Our examples illustrate how web security patterns that developers currently program in JavaScript (with much difficulty and still with dubious results) can instead be programmed naturally in TS#, retaining a flavor of idiomatic JavaScript, while providing strong safety guarantees by virtue of typing.
A certifying compiler preserves type information through compilation to assembly language programs, producing typed assembly language (TAL) programs that can be verified for safety independently so that the compiler does not need to be trusted. There are two challenges for adopting certifying compilation in practice. First, requiring every compiler transformation and optimization to preserve types is a large burden on compilers, especially when adopting certifying compilation into existing optimizing non-certifying compilers. Second, type annotations significantly increase the size of assembly language programs. This paper proposes an alternative to traditional certifying compilers. It presents iTalX, the first inferable TAL type system that supports existential types, arrays, interfaces, and stacks. We have proved our inference algorithm is complete, meaning if an assembly language program is typeable with iTalX then our algorithm will infer an iTalX typing for that program. Furthermore, our algorithm is guaranteed to terminate even if the assembly language program is untypeable. We demonstrate that it is practical to infer such an expressive TAL by showing a prototype implementation of type inference for code compiled by Bartok, an optimizing C# compiler. Our prototype implementation infers complete type annotations for 98% of functions in a suite of realistic C# benchmarks. The typeinference time is about 8% of the compilation time. We needed to change only 2.5% of the compiler code, mostly adding new code for defining types and for writing types to object files. Most transformations are untouched. Type-annotation size is only 17% of the size of pure code and data, reducing type annotations in our previous certifying compiler [4] by 60%. The compiler needs to preserve only essential type information such as method signatures, object-layout information, and types for static data and external labels. Even non-certifying compilers have most of this information available.
A number of programming languages use rich type systems to verify security properties of code. Some of these languages are meant for source programming, but programs written in these languages are compiled without explicit security proofs, limiting their utility in settings where proofs are necessary, e.g., proof-carrying authorization. Others languages do include explicit proofs, but these are generally lambda calculi not intended for source programming, that must be further compiled to an executable form. A language suitable for source programming backed by a compiler that enables end-to-end verification is missing.In this paper, we present a type-preserving compiler that translates programs written in FINE, a source-level functional language with dependent refinements and affine types, to DCIL, a new extension of the .NET Common Intermediate Language. FINE is type checked using an external SMT solver to reduce the proof burden on source programmers. We extract explicit LCF-style proof terms from the solver and carry these proof terms in the compilation to DCIL, thereby removing the solver from the trusted computing base. Explicit proofs enable DCIL to be used in a number of important scenarios, including the verification of mobile code, proof-carrying authorization, and evidence-based auditing. We report on our experience using FINE to build reference monitors for several applications, ranging from a plugin-based email client to a conference management server.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.