Garbage collectors are notoriously hard to verify, due to their lowlevel interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were handwritten or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness.
In most modern operating systems, a process is a hardware-protected abstraction for isolating code and data. This protection, however, is selective. Many common mechanisms---dynamic code loading, run-time code generation, shared memory, and intrusive system APIs---make the barrier between processes very permeable. This paper argues that this traditional open process architecture exacerbates the dependability and security weaknesses of modern systems. As a remedy, this paper proposes a sealed process architecture , which prohibits dynamic code loading, self-modifying code, shared memory, and limits the scope of the process API. This paper describes the implementation of the sealed process architecture in the Singularity operating system, discusses its merits and drawbacks, and evaluates its effectiveness. Some benefits of this sealed process architecture are: improved program analysis by tools, stronger security and safety guarantees, elimination of redundant overlaps between the OS and language runtimes, and improved software engineering. Conventional wisdom says open processes are required for performance; our experience suggests otherwise. We present the first macrobenchmarks for a sealed-process operating system and applications. The benchmarks show that an experimental sealed-process system can achieve performance competitive with highly-tuned, commercial, open-process systems.
Typed assembly language (TAL) and Hoare logic can verify the absence of many kinds of errors in low-level code. We use TAL and Hoare logic to achieve highly automated, static verification of the safety of a new operating system called Verve. Our techniques and tools mechanically verify the safety of every assembly language instruction in the operating system, run-time system, drivers, and applications (in fact, every part of the system software except the boot loader). Verve consists of a "Nucleus" that provides primitive access to hardware and memory, a kernel that builds services on top of the Nucleus, and applications that run on top of the kernel. The Nucleus, written in verified assembly language, implements allocation, garbage collection, multiple stacks, interrupt handling, and device access. The kernel, written in C# and compiled to TAL, builds higher-level services, such as preemptive threads, on top of the Nucleus. A TAL checker verifies the safety of the kernel and applications. A Hoare-style verifier with an automated theorem prover verifies both the safety and correctness of the Nucleus. Verve is, to the best of our knowledge, the first operating system mechanically verified to guarantee both type and memory safety. More generally, Verve's approach demonstrates a practical way to mix high-level typed code with low-level untyped code in a verifiably safe manner.
A certifying compiler preserves type information through compilation to assembly language programs, producing typed assembly language (TAL) programs that can be verified for safety independently so that the compiler does not need to be trusted. There are two challenges for adopting certifying compilation in practice. First, requiring every compiler transformation and optimization to preserve types is a large burden on compilers, especially when adopting certifying compilation into existing optimizing non-certifying compilers. Second, type annotations significantly increase the size of assembly language programs. This paper proposes an alternative to traditional certifying compilers. It presents iTalX, the first inferable TAL type system that supports existential types, arrays, interfaces, and stacks. We have proved our inference algorithm is complete, meaning if an assembly language program is typeable with iTalX then our algorithm will infer an iTalX typing for that program. Furthermore, our algorithm is guaranteed to terminate even if the assembly language program is untypeable. We demonstrate that it is practical to infer such an expressive TAL by showing a prototype implementation of type inference for code compiled by Bartok, an optimizing C# compiler. Our prototype implementation infers complete type annotations for 98% of functions in a suite of realistic C# benchmarks. The typeinference time is about 8% of the compilation time. We needed to change only 2.5% of the compiler code, mostly adding new code for defining types and for writing types to object files. Most transformations are untouched. Type-annotation size is only 17% of the size of pure code and data, reducing type annotations in our previous certifying compiler [4] by 60%. The compiler needs to preserve only essential type information such as method signatures, object-layout information, and types for static data and external labels. Even non-certifying compilers have most of this information available.
Type-preserving compilers translate well-typed source code, such as Java or C#, into verifiable target code, such as typed assembly language or proof-carrying code. This paper presents the implementation of type-preserving compilation in a complex, large-scale optimizing compiler. Compared to prior work, this implementation supports extensive optimizations, and it verifies a large portion of the interface between the compiler and the runtime system. This paper demonstrates the practicality of type-preserving compilation in complex optimizing compilers: the generated typed assembly language is only 2.3% slower than the base compiler's generated untyped assembly language, and the type-preserving compiler is 82.8% slower than the base compiler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.