Flooding displaces large populations each season, which potentially increases the exposure of the vulnerable societies. Having failed to curve down the number of people infected with COVID-19 in the first wave of the pandemic, many states in the United States (U.S.) are now at high risk of the concurrence of the two disasters. Assessing this compound risk before the country enters the flood season is of vital importance. Therefore, we provide a prompt tool to assess the compound risk of COVID-19 at the county level over the U.S.. We find that (1) the number of flood insurance house claims can proxy the displaced population accurately with more spatiotemporal detail, and (2) the high-risk areas of both flooding and COVID-19 are concentrated along the southern and eastern coasts and some parts of the Mississippi River. Our findings may trigger the interest of further exploring the topics related to the concurrence of COVID-19 and flooding.
Recently, the use of the numerical rainfall forecast has become a common approach to improve the lead time of streamflow forecasts for flood control and reservoir regulation. The control forecasts of five operational global prediction systems from different centers were evaluated against the observed data by a series of area-weighted verification and classification metrics during May to September 2015–2017 in six subcatchments of the Xixian Catchment in the Huaihe River Basin. According to the demand of flood control safety, four different ensemble methods were adopted to reduce the forecast errors of the datasets, especially the errors of missing alarm (MA), which may be detrimental to reservoir regulation and flood control. The results indicate that the raw forecast datasets have large missing alarm errors (MEs) and cannot be directly applied to the extension of flood forecasting lead time. Although the ensemble methods can improve the performance of rainfall forecasts, the missing alarm error is still large, leading to a huge hazard in flood control. To improve the lead time of the flood forecast, as well as avert the risk from rainfall prediction, a new ensemble method was proposed on the basis of support vector regression (SVR). Compared to the other methods, the new method has a better ability in reducing the ME of the forecasts. More specifically, with the use of the new method, the lead time of flood forecasts can be prolonged to at least 3 d without great risk in flood control, which corresponds to the aim of flood prevention and disaster reduction.
With the rapid development of meteorological models, numerical weather prediction is increasingly used in flood forecasting and reservoir regulation, but its forecasting ability is limited by the large amount of uncertainty from meteorological systems. In this paper, a new, hybrid framework is developed to improve numerical precipitation forecasting by combining the multimodel ensemble and probabilistic postprocessing methods. The results show that the multimodel ensemble method used in this paper is an efficient way to reduce prediction errors, especially missing alarm errors. In a comparison of the probabilistic postprocessors based the generalized Bayesian model (GBM) and bivariate probabilistic model (BPM), the GBM shows better performance from the aspects of indicators and is more suitable for real-time applications. Meanwhile, the assessment of probabilistic results shows that the skill of probabilistic precipitation forecasts is related to the quality of their inputs. According to these results, a new hybrid framework is proposed by taking the results from multimodel ensemble as the input of probabilistic postprocessor. Compared to using the raw numerical in GBM, the hybrid framework improves the accuracy, sharpness, reliability, and resolution ability from different lead times by 2–13%, 1–22%, and 0–12% respectively, especially when the lead time is less than 4 d, the improvement can reach 9–13%, 10–22%, and 5–12% respectively. In conclusion, the hybrid two-step framework can provide a more skillful precipitation forecast, which can be useful for flood forecasting and reservoir regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.