We apply the polynomial function to approximate the functional coefficients of the state-dependent autoregressive model for chaotic time series prediction. We present a novel local nonlinear model called local polynomial coefficient autoregressive prediction (LPP) model based on the phase space reconstruction. The LPP model can effectively fit nonlinear characteristics of chaotic time series with simple structure and have excellent one-step forecasting performance. We have also proposed a kernel LPP (KLPP) model which applies the kernel technique for the LPP model to obtain better multistep forecasting performance. The proposed models are flexible to analyze complex and multivariate nonlinear structures. Both simulated and real data examples are used for illustration.
A new methodology, which combines nonparametric method based on local functional coefficient autoregressive (LFAR) form with chaos theory and regional method, is proposed for multistep prediction of chaotic time series. The objective of this research study is to improve the performance of long-term forecasting of chaotic time series. To obtain the prediction values of chaotic time series, three steps are involved. Firstly, the original time series is reconstructed inm-dimensional phase space with a time delayτby using chaos theory. Secondly, select the nearest neighbor points by using local method in them-dimensional phase space. Thirdly, we use the nearest neighbor points to get a LFAR model. The proposed model’s parameters are selected by modified generalized cross validation (GCV) criterion. Both simulated data (Lorenz and Mackey-Glass systems) and real data (Sunspot time series) are used to illustrate the performance of the proposed methodology. By detailed investigation and comparing our results with published researches, we find that the LFAR model can effectively fit nonlinear characteristics of chaotic time series by using simple structure and has excellent performance for multistep forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.