BackgroundHOXA1 is a member of the Homeobox gene family, which encodes a group of highly conserved transcription factors that are important in embryonic development. However, it has been reported that HOXA1 exhibits oncogenic properties in many malignancies. This study focused on the expression and clinical significance of HOXA1 in gastric cancer (GC).MethodsTo assess the mRNA and protein expression of HOXA1 and cyclin D1 in GC tissues, we utilized qRT-PCR and western blotting, respectively. The effects of HOXA1 on GC cell proliferation, migration, and invasion, as well as xenograft tumor formation and the cell cycle were investigated in our established stable HOXA1 knockdown GC cell lines. The protein expression of HOXA1 and cyclin D1 was examined by immunohistochemistry using GC tissue microarrays (TMA) to analyze their relationship on a histological level. The Kaplan-Meier method and cox proportional hazards model were used to analyze the relationship of HOXA1 and cyclin D1 expression with GC clinical outcomes.ResultsHOXA1 mRNA and protein expression were upregulated in GC tissues. Knockdown of HOXA1 in GC cells not only inhibited cell proliferation, migration, and invasion in vitro but also suppressed xenograft tumor formation in vivo. Moreover, HOXA1 knockdown induced changes in the cell cycle, and HOXA1 knockdown cells were arrested at the G1 phase, the number of cells in S phase was reduced, and the expression of cyclin D1 was decreased. In GC tissues, high cyclin D1 mRNA and protein expression were detected, and a significant correlation was found between the expression of HOXA1 and cyclin D1. Survival analysis indicated that HOXA1 and cyclin D1 expression were significantly associated with disease-free survival (DFS) and overall survival (OS). Interestingly, patients with tumors that were positive for HOXA1 and cyclin D1 expression showed worse prognosis. Multivariate analysis confirmed that the combination of HOXA1 and cyclin D1 was an independent prognostic indicator for OS and DFS.ConclusionOur data show that HOXA1 plays a crucial role in GC development and clinical prognosis. HOXA1, alone or combination with cyclin D1, may serve as a novel prognostic biomarker for GC.
Several members of the sirtuin family (SIRT1-7), which are a highly conserved family of NAD+-dependent enzymes, play an important role in tumor formation. Recent studies indicate that SIRT4 acts as a tumor suppressor by regulating glutamine metabolism. In the present study, we investigated the expression and activity of SIRT4 in colorectal cancer. Using a tissue microarray of 89 colorectal cancer cases, we found that SIRT4 was significantly downregulated in colorectal cancer tissues compared with that noted in the corresponding normal tissue (P<0.001). Lower SIRT4 levels were associated with worse pathological differentiation (P=0.031) and poorer post-operative overall survival rate (P=0.041). We found that SIRT4 overexpression inhibited the proliferation of colorectal cancer cells in vitro and in vivo. SIRT4 inhibited the glutamine metabolism of colorectal cancer cells and synergistically with glycolysis inhibitors induced cell death. SIRT4 also increased the sensitivity of colorectal cancer cells to chemotherapeutic drug 5-fluorouracil by inhibiting the cell cycle. Together, these results highlight the prognostic value of SIRT4 in colorectal cancer and the potential application of SIRT4 in colorectal cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.