Functionally graded materials (FGMs) and functionally graded structures (FGSs) are special types of advanced composites with peculiar features and advantages. This article reviews the design criteria of functionally graded additive manufacturing (FGAM), which is capable of fabricating gradient components with versatile functional properties. Conventional geometrical‐based design concepts have limited potential for FGAM and multi‐scale design concepts (from geometrical patterning to microstructural design) are needed to develop gradient components with specific graded properties at different locations. FGMs and FGSs are of great interest to a larger range of industrial sectors and applications including aerospace, automotive, biomedical implants, optoelectronic devices, energy absorbing structures, geological models, and heat exchangers. This review presents an overview of various fabrication ideas and suggestions for future research in terms of design and creation of FGMs and FGSs, benefiting a wide variety of scientific fields.
A solvent-free method to fabricate graphene-reinforced nanocomposites in net shape via digital light processing (DLP) 3D printing has been developed in this work. The effect of graphene nanofillers on resin viscosity and wettability for various printing parameters has been examined, with a systematic characterization of the mechanical and thermomechanical properties. With the addition of 0.5 wt.% graphene nanoplatelets in the resin, the flexural modulus and fracture toughness have been improved by 14% and 28% from neat resin, respectively. Thermomechanical properties of graphene-reinforced nanocomposites were also enhanced compared with the neat resin, without scarification in their printability. The feasibility of utilizing the DLP method to fabricate a fracture toughness specimen (KIC test) without complex skill-dependent notch preparation steps was explored, with different notch tip angles printed for net-shaped specimens. This provided a simple and versatile way to perform a quick examination of reinforcing efficiency from nanofillers at very low cost with high resolution and reproducibility. To demonstrate the suitability of current resins for complexly shaped structures, a gyroid scaffold for tissue engineering applications based on current graphene nanocomposite resins has been successfully fabricated via DLP, showing the great potential of current photocurable resins for applications in various fields such as tissue engineering or personalized medical devices without the cost barriers of traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.