The aim of this study was to develop an amphipathic polyethylene glycol (PEG) derivative that was bi-terminally modified with celastrol and ginsenoside Rh2 (Celastrol-PEG-G Rh2). Such derivative was capable of forming novel, celastrol-loaded polymeric micelles (CG-M) for endo/lysosomal delivery and thereby synergistic treatment of lung cancer. Celastrol-PEG-G Rh2 with a yield of 55.6% was first synthesized and characterized. Its critical micellar concentration was 1 × 10M, determined by pyrene entrapment method. CG-M had a small particle size of 121.53 ± 2.35 nm, a narrow polydispersity index of 0.214 ± 0.001 and a moderately negative zeta potential of -23.14 ± 3.15 mV. Celastrol and G Rh2 were rapidly released from CG-M under acidic and enzymatic conditions, but slowly released in normal physiological environments. In cellular studies, the internalization of celastrol and G Rh2 by human non-small cell lung cancer (A549) cells treated with CG-M was 5.8-fold and 1.8-fold higher than that of non-micelle control. Combinational therapy of celastrol and G Rh2 using CG-M exhibited synergistic anticancer activities in cell apoptosis and proliferation assays via rapid drug release within endo/lysosomes. Most importantly, the celastrol in CG-M exhibited a long elimination half-life of 445.3 ± 43.5 min and an improved area under the curve of 645060.8 ± 63640.7 ng/mL/h, that were 1.03-fold and 2.44-fold greater than those of non-micelle control, respectively. These findings suggest that CG-M is a promising vector for precisely releasing anticancer drugs within the tumor cells, and thereby exerts an improved synergistic anti-lung cancer effect.
Background Upadacitinib, a novel selective Janus kinase 1 (JAK1) inhibitor, has been recently approved by the US FDA for the treatment of adult patients with moderately to severely active rheumatoid arthritis (RA). An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative analysis of upadacitinib in beagle dog plasma was developed and validated. Methods Upadacitinib and fedratinib (internal standard, IS) were extracted with ethyl acetate under alkaline condition and then separated and detected. The chromatographic column was Waters Acquity UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm), the mobile phase was acetonitrile and 0.1% formic acid in water with gradient elution procedure, and the flow rate was 0.40 mL/min. Under the positive ion mode, upadacitinib and IS were monitored by multiple reaction monitoring (MRM) as the following mass transition pairs: m/z 447.00 → 361.94 for upadacitinib and m/z 529.82 → 141.01 for IS. Results In the concentration range of 1–500 ng/mL, upadacitinib had good linearity, and the lower limit of quantification (LLOQ) was 1 ng/mL. The RSD of the intra- and inter-day precision was less than 10.03%, and the RE of accuracy was −3.79% to 2.58%. The extraction recovery of upadacitinib was more than 80%, the matrix effect was around 100%, and upadacitinib was found to be stable. Conclusion The novel optimized UPLC-MS/MS assay was an effective tool for the determination of upadacitinib and had been successfully applied to the pharmacokinetic study of upadacitinib in beagle dogs, and this method would also be used to study DDIs.
Endometrial cancer (EC) is the most common gynecologic malignancy, and its incidence has been increasing every year. Nerve signaling is part of the tumor microenvironment and plays an active role in tumor progression and invasion. However, the relationship between the expression of neural-related genes (NRGs) and prognosis in endometrial cancer remains unknown. In this study, we obtained RNA sequencing data of EC from The Cancer Genome Atlas (TCGA). Endometrial cancer was classified into two subtypes based on the expression of neural-associated genes (NRGs), with statistical differences in clinical stage, pathological grading, and prognosis. A prognostic prediction model was established by LASSO-Cox analysis, and the results showed that high expression of NRGs was associated with poor survival prognosis. Further, CHRM2, GRIN1, L1CAM, and SEMA4F were found to be significantly associated with clinical stage, immune infiltration, immune response, and important signaling pathways in endometrial cancer. The reclassification of endometrial cancer based on NRG expression would be beneficial for future clinical practice. The genes CHRM2, GRIN1, L1CAM, and SEMA4F might serve as potential biomarkers of EC prognosis.
Umbralisib is a dual inhibitor of phosphatidylinositol 3-kinase delta (PI3Kδ) and casein kinase 1 epsilon (CK1ε) for treating marginal zone lymphoma (MZL) and follicular lymphoma (FL). This study aimed to develop a fast and stable ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for quantitative analysis of umbralisib in rat plasma and its application for evaluating the effect of sophocarpine on the pharmacokinetics of umbralisib. A direct protein preparation with acetonitrile was used to deal with rat plasma. Umbralisib and duvelisib (internal standard, IS) were isolated on a Waters Acquity UPLC BEH C18 column with mobile phase consisted of acetonitrile and 0.1% formic acid in water. The linear range was from 0.5 to 1,000 ng/ml. Both of the precision (RSD%) and accuracy (RE%) were less than 15% in a permissible range. The mean recovery and matrix effect of umbralisib were 86.3–96.2% and 97.8–112.0%, respectively. When umbralisib was combined with sophocarpine, AUC0→∞ of umbralisib was significantly reduced to 2462.799 ± 535.736 ng/ml•h from 5416.665 ± 1,451.846 ng/ml•h, and Cmax also was markedly diminished. Moreover, CLz/F was increased more than two times. This developed, optimized and technical UPLC-MS/MS method was extremely suitable for detecting the concentrations of umbralisib in rat plasma after an oral administration, and sophocarpine significantly changed the pharmacokinetics of umbralisib in rats. This obvious pharmacokinetic changes indicates that there seems to exist herb-drug interaction between sophocarpine and umbralisib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.