All-inorganic cesium lead bromide (CsPbBr 3 ) perovskite quantum dots (QDs) have recently emerged as highly promising solution-processed materials for nextgeneration light-emitting applications. They combine the advantages of QD and perovskite materials, which makes them an attractive platform for achieving high optical gain with high stability. Here, we report an ultralow lasing threshold (0.39 μJ/cm 2 ) from a hybrid vertical cavity surface emitting laser (VCSEL) structure consisting of a CsPbBr 3 QD thin film and two highly reflective distributed Bragg reflectors (DBRs). Temperature dependence of the lasing threshold and longterm stability of the device were also characterized. Notably, the CsPbBr 3 QDs provide superior stability and enable stable device operation over 5 h/1.8 × 10 7 optical pulse excitations under ambient conditions. This work demonstrates the significant potential of CsPbBr 3 perovskite QD VCSELs for highly reliable lasers, capable of operating in the short-pulse (femtosecond) and quasi-continuous-wave (nanosecond) regimes.
Recent advances in optical clearing and light-sheet microscopy have provided unprecedented access to structural and molecular information from intact tissues. However, current light-sheet microscopes have imposed constraints on the size, shape, number of specimens, and compatibility with various clearing protocols. Here we present a multi-immersion open-top light-sheet microscope that enables simple mounting of multiple specimens processed with a variety of clearing protocols, which will facilitate wide adoption by preclinical researchers and clinical laboratories. In particular, the open-top geometry provides unsurpassed versatility to interface with a wide range of accessory technologies in the future.
Fluorescence microscopy is a workhorse tool in biomedical imaging but often poses substantial challenges to practitioners in achieving bright or uniform labeling. In addition, while antibodies are effective specific labels, their reproducibility is often inconsistent, and they are difficult to use when staining thick specimens. We report the use of conventional, commercially available fluorescent dyes for rapid and intense covalent labeling of proteins and carbohydrates in super-resolution (expansion) microscopy and cleared tissue microscopy. This approach, which we refer to as Fluorescent Labeling of Abundant Reactive Entities (FLARE), produces simple and robust stains that are modern equivalents of classic small-molecule histology stains. It efficiently reveals a wealth of key landmarks in cells and tissues under different fixation or sample processing conditions and is compatible with immunolabeling of proteins and in situ hybridization labeling of nucleic acids.
are co-founders and shareholders of Lightspeed Microscopy Inc. A. Madabhushi is an equity holder in Elucid Bioimaging and in Inspirata Inc. In addition, he has served as a scientific advisory board member for Inspirata Inc, Astrazeneca, Bristol Meyers-Squibb and Merck. Currently, A. Madabhushi serves on the advisory board of Aiforia Inc. He also has sponsored research agreements with Philips, AstraZeneca, Boehringer-Ingelheim and Bristol Meyers-Squibb. A. Madabhushi's technology has been licensed to Elucid Bioimaging. He is also involved in a NIH U24 grant with PathCore Inc, and 3 different R01 grants with Inspirata Inc.Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.