All-inorganic cesium lead bromide (CsPbBr 3 ) perovskite quantum dots (QDs) have recently emerged as highly promising solution-processed materials for nextgeneration light-emitting applications. They combine the advantages of QD and perovskite materials, which makes them an attractive platform for achieving high optical gain with high stability. Here, we report an ultralow lasing threshold (0.39 μJ/cm 2 ) from a hybrid vertical cavity surface emitting laser (VCSEL) structure consisting of a CsPbBr 3 QD thin film and two highly reflective distributed Bragg reflectors (DBRs). Temperature dependence of the lasing threshold and longterm stability of the device were also characterized. Notably, the CsPbBr 3 QDs provide superior stability and enable stable device operation over 5 h/1.8 × 10 7 optical pulse excitations under ambient conditions. This work demonstrates the significant potential of CsPbBr 3 perovskite QD VCSELs for highly reliable lasers, capable of operating in the short-pulse (femtosecond) and quasi-continuous-wave (nanosecond) regimes.
Autophagy attenuates the efficacy of conventional chemotherapy but its effects on immunotherapy have been little studied. Here, we report that chemotherapy renders tumor cells more susceptible to lysis by CTL in vivo. Moreover, bystander tumor cells that did not express antigen were killed by CTL. This effect was mediated by transient but dramatic upregulation of the mannose-6-phosphate receptor (MPR) on the tumor cell surface. Antitumor effects of combined treatment related to the kinetics of MPR upregulation and abrogation of this event abolished the combined effect of immunotherapy and chemotherapy. MPR accumulation on the tumor cell surface during chemotherapy was observed in different mouse tumor models and in patients with multiple myeloma. Notably, this effect was the result of redistribution of the receptor caused by chemotherapy-inducible autophagy. Together, our findings reveal one molecular mechanism through which the antitumor effects of conventional cancer chemotherapy and immunotherapy are realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.