BACKGROUNDOil‐in‐water (O/W) emulsions are thermodynamically unstable and are easily oxidized. Recently, protein hydrolysates have been used to enhance the emulsifying and oxidative stability of emulsions. High‐pressure processing (HPP) enzymatic hydrolysates of soy protein isolate have higher bioactivities. The objective of the study was to investigate the effects of various soy protein isolate hydrolysate (SPIH) concentrations obtained during different 4 h pressure treatments on improving the emulsifying and oxidative stability of myofibrillar protein (MP) emulsions.RESULTSEmulsions with 4 mg mL−1 SPIH obtained at 200 MPa had the highest emulsifying activity index and emulsion stability index (P ≤ 0.05). This increase in emulsion stability was related to increased zeta potential and reduced average particle size. Optical microscopy and confocal laser scanning microscopy observations confirmed that emulsions with 4 mg mL−1 SPIH possessed relatively small oil droplets. The addition of SPIH obtained at 200 MPa significantly reduced thiobarbituric acid reactive substance values (P ≤ 0.05) of emulsions during 8 days of storage. Concurrently, the carbonyl content remained the lowest and the sulfhydryl content remained the highest, which indicated that the emulsions had higher protein oxidative stability.CONCLUSIONSSPIH obtained under HPP could improve the emulsifying and oxidative stability of MP‐prepared O/W emulsions.
The potential utilization of intestine mucous and by‐products from the pig processing industry, was investigated. Pig intestine mucus contains intestinal alkaline phosphatase (IAP) which has been shown to function as the gut's mucosal defense factor. The extraction method was conducted at high‐pressure homogenization (HPH)‐assisted hierarchical extraction, and then IAP was purified by ion‐exchange chromatography. Also, the enzymatic properties and the dephosphorylation ability of IAP were investigated. After the extraction and purification process, IAP activity was 2980 U/ml, and purity was 95.71%. The optimal reaction conditions of IAP were at pH 9.6; the temperature was 37°C, Zn2+, Mg2+, and EDTA were a potent inhibitor of IAP activity. Furthermore, IAP showed dose‐dependent dephosphorylation to lipopolysaccharide (LPS), adenosine triphosphate (ATP), and CpG DNA in vitro. In summary, this study provides an efficient extraction and purification for IAP, which can be used as natural anti‐inflammatory material in the pharmaceutical and functional food industries. Practical applications In this study, pig IAP with high purity and high activity was obtained by HPH‐ assisted fractional extraction of ammonium sulfate and acetone, followed by ion chromatography purification, which is simpler than the recombinant method of IAP, environmentally friendly, while reducing the process cost, and has high application value. Moreover, through the analysis of the IAP, it was found that IAP has strong dephosphorylating properties for inflammatory mediators such as LPS, ATP, and CpG DNA. Therefore, in practical application, IAP leaves a significant place for broad‐spectrum anti‐inflammatory function in human nutrition.
In this study, we investigated the effects of intestinal alkaline phosphatase (IAP) in controlled intestinal inflammation and alleviated associated insulin resistance (IR). We also explored the possible underlying molecular mechanisms, showed the preventive effect of IAP on IR in vivo, and verified the dephosphorylation of IAP for the inhibition of intestinal inflammation in vitro. Furthermore, we examined the preventive role of IAP in IR induced by a high-fat diet in mice. We found that an IAP + IAP enhancer significantly ameliorated blood glucose, insulin, low-density lipoprotein, gut barrier function, inflammatory markers, and lipopolysaccharide (LPS) in serum. IAP could dephosphorylate LPS and nucleoside triphosphate in a pH-dependent manner in vitro. Firstly, LPS is inactivated by IAP and IAP reduces LPS-induced inflammation. Secondly, adenosine, a dephosphorylated product of adenosine triphosphate, elicited anti-inflammatory effects by binding to the A2A receptor, which inhibits NF-κB, TNF, and PI3K-Akt signalling pathways. Hence, IAP can be used as a natural anti-inflammatory agent to reduce intestinal inflammation-induced IR.
Aim Iridoid glycosides (IG) as the major active fraction of Syringa oblata Lindl. has a proven anti-inflammatory effect for ulcerative colitis (UC). However, its current commercial formulations are hampered by low bioavailability and unable to reach inflamed colon. To overcome the limitation, dual functional IG-loaded nanoparticles (DFNPs) were prepared to increase the residence time of IG in colon. The protective mechanism of DFNPs on DSS-induced colonic injury was evaluated in rats. Materials and Methods We prepared DFNPs using the oil-in-water emulsion method. PLGA was selected as sustained-release polymer, and ES100 and EL30D-55 as pH-responsive polymers. The morphology and size distribution of NPs were measured by SEM and DLS technique. To evaluate colon targeting of DFNPs, DiR, was encapsulated as a fluorescent probe into NPs. Fluorescent distribution of NPs were investigated. The therapeutic potential and in vivo transportation of NPs in gastrointestinal tract were evaluated in a colitis model. Results SEM images and zeta data indicated the successful preparation of DFNPs. This formulation exhibited high loading capacity. Drug release results suggested DFNPs released less than 20% at the first 6 h in simulated gastric fluid (pH1.2) and simulated small intestine fluid (pH6.8). A high amount of 84.7% sustained release from NPs in simulated colonic fluid (pH7.4) was beyond 24 h. DiR-loaded NPs demonstrated a much higher colon accumulation, suggesting effective targeting due to functionalization with pH and time-dependent polymers. DFNPs could significantly ameliorate the colonic damage by reducing DAI, macroscopic score, histological damage and cell apoptosis. Our results also proved that the potent anti-inflammatory effect of DFNPs is contributed by decrease of NADPH, gene expression of COX-2 and MMP-9 and the production of TNF-α, IL-17, IL-23 and PGE2. Conclusion We confirm that DFNPs exert protective effects through inhibiting the inflammatory response, which could be developed as a potential colon-targeted system.
Background Hyaluronic acid (HA) and HA fragments interact with a variety of human body receptors and are involved in the regulation of various physiological functions and leukocyte trafficking in the body. Accordingly, the development of an injectable HA fragment with good tissue permeability, the identification of its indications, and molecular mechanisms are of great significance for its clinical application. The previous studies showed that the clinical effects of injectable 35kDa B-HA result from B-HA binding to multiple receptors in different cells, tissues, and organs. This study lays the foundation for further studies on the comprehensive clinical effects of injectable B-HA. Methods We elaborated on the production process, bioactivity assay, efficacy analyses, and safety evaluation of an injectable novel HA fragment with an average molecular weight of 35 kDa (35 kDa B-HA), produced by recombinant human hyaluronidase PH20 digestion. Results The results showed that 35 kDa B-HA induced human erythrocyte aggregation (rouleaux formation) and accelerated erythrocyte sedimentation rates through the CD44 receptor. B-HA application and injection treatment significantly promoted the removal of mononuclear cells from the site of inflammation and into the lymphatic circulation. At a low concentration, 35 kDa B-HA inhibited production of reactive oxygen species and tumor necrosis factor by neutrophils; at a higher concentration, 35 kDa B-HA promoted the migration of monocytes. Furthermore, 35 kDa B-HA significantly inhibited the migration of neutrophils with or without lipopolysaccharide treatment, suggesting that in local tissues, higher concentrations of 35 kDa B-HA have antiinflammatory effects. After 99m Tc radiolabeled 35 kDa B-HA was intravenously injected into mice, it quickly entered into the spleen, liver, lungs, kidneys and other organs through the blood circulation. Conclusion This study demonstrated that the HA fragment B-HA has good tissue permeability and antiinflammatory effects, laying a theoretical foundation for further clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.