The aim of the current study is to assess the prevalence of Campylobacter infection in broiler chickens, raised in intensive production conditions, and to evaluate the antimicrobial susceptibility of recovered Campylobacter isolates. A total of 590 cloacal swab samples were taken from 13 broiler chicken flocks in the North East of Tunisia. All samples were tested for the presence of thermophilic Campylobacter by culture and PCR, targeting the mapA and ceuE genes, respectively. Susceptibility to antimicrobial drugs was tested against 8 antibiotics. Prevalence of Campylobacter infection, relationship with geographic origins and seasons, antimicrobial resistance rates and patterns were analyzed. Total prevalence of Campylobacter infection in broiler flocks was in the range of 22.4%, with a predominance of C. jejuni (68.9%), followed by C. coli (31.1%). Positive association was highlighted between the infection level and the season (P < 0.001), but no link was emphasized considering the geographic origin. Antimicrobial susceptibility testing revealed very high resistance rates detected against macrolide, tetracycline, quinolones, and chloramphenicol, ranging from 88.6% to 100%. Lower resistance prevalence was noticed for β-lactams (47% and 61.4%) and gentamicin (12.9%). 17 R-type patterns were observed, and a common pattern was found in 30.3% of isolates. This study provides updates and novel data on the prevalence and the AMR of broiler campylobacters in Tunisia, revealing the occurrence of high resistance to several antibiotics and emphasizing the requirement of better surveillance and careful regulation of antimicrobials use.
BackgroundHard ticks are hematophagous ectoparasites characterized by their long-term feeding. The saliva that they secrete during their blood meal is their crucial weapon against host-defense systems including hemostasis, inflammation and immunity. The anti-hemostatic, anti-inflammatory and immune-modulatory activities carried out by tick saliva molecules warrant their pharmacological investigation. The Hyalomma dromedarii Koch, 1844 tick is a common parasite of camels and probably the best adapted to deserts of all hard ticks. Like other hard ticks, the salivary glands of this tick may provide a rich source of many compounds whose biological activities interact directly with host system pathways. Female H. dromedarii ticks feed longer than males, thereby taking in more blood. To investigate the differences in feeding behavior as reflected in salivary compounds, we performed de novo assembly and annotation of H. dromedarii sialotranscriptome paying particular attention to variations in gender gene expression.ResultsThe quality-filtered Illumina sequencing reads deriving from a cDNA library of salivary glands led to the assembly of 15,342 transcripts. We deduced that the secreted proteins included: metalloproteases, glycine-rich proteins, mucins, anticoagulants of the mandanin family and lipocalins, among others. Expression analysis revealed differences in the expression of transcripts between male and female H. dromedarii that might explain the blood-feeding strategies employed by both genders.ConclusionsThe annotated sialome of H. dromedarii helps understand the interaction of tick-host molecules during blood-feeding and can lead to the discovery of new pharmacologically active proteins of ticks of the genus Hyalomma.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2874-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.