Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen-drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. MethodsWe estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen-drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drugresistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. FindingsOn the basis of our predictive statistical models, there were an estimated 4•95 million (3•62-6•57) deaths associated with bacterial AMR in 2019, including 1•27 million (95% UI 0•911-1•71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27•3 deaths per 100 000 (20•9-35•3), and lowest in Australasia, at 6•5 deaths (4•3-9•4) per 100 000. Lower respiratory infections accounted for more than 1•5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000-1 270 000) deaths attributable to AMR and 3•57 million (2•62-4•78) deaths associated with AMR in 2019. One pathogen-drug combination, meticillinresistant S aureus, caused more than 100 000 deaths attributa...
Little is known about the excess mortality caused by multidrug-resistant (MDR) bacterial infection in low- and middle-income countries (LMICs). We retrospectively obtained microbiology laboratory and hospital databases of nine public hospitals in northeast Thailand from 2004 to 2010, and linked these with the national death registry to obtain the 30-day mortality outcome. The 30-day mortality in those with MDR community-acquired bacteraemia, healthcare-associated bacteraemia, and hospital-acquired bacteraemia were 35% (549/1555), 49% (247/500), and 53% (640/1198), respectively. We estimate that 19,122 of 45,209 (43%) deaths in patients with hospital-acquired infection due to MDR bacteria in Thailand in 2010 represented excess mortality caused by MDR. We demonstrate that national statistics on the epidemiology and burden of MDR in LMICs could be improved by integrating information from readily available databases. The prevalence and mortality attributable to MDR in Thailand are high. This is likely to reflect the situation in other LMICs.DOI: http://dx.doi.org/10.7554/eLife.18082.001
BackgroundThe indirect immunofluorescence assay (IFA) is considered a reference test for scrub typhus. Recently, the Scrub Typhus Infection Criteria (STIC; a combination of culture, PCR assays and IFA IgM) were proposed as a reference standard for evaluating alternative diagnostic tests. Here, we use Bayesian latent class models (LCMs) to estimate the true accuracy of each diagnostic test, and of STIC, for diagnosing scrub typhus.Methods/Principal FindingsData from 161 patients with undifferentiated fever were re-evaluated using Bayesian LCMs. Every patient was evaluated for the presence of an eschar, and tested with blood culture for Orientia tsutsugamushi, three different PCR assays, IFA IgM, and the Panbio IgM immunochromatographic test (ICT). True sensitivity and specificity of culture (24.4% and 100%), 56kDa PCR assay (56.8% and 98.4%), 47kDa PCR assay (63.2% and 96.1%), groEL PCR assay (71.4% and 93.0%), IFA IgM (70.0% and 83.8%), PanBio IgM ICT (72.8% and 96.8%), presence of eschar (42.7% and 98.9%) and STIC (90.5% and 82.5%) estimated by Bayesian LCM were considerably different from those obtained when using STIC as a reference standard. The IgM ICT had comparable sensitivity and significantly higher specificity compared to IFA (p=0.34 and p<0.001, respectively).ConclusionsThe low specificity of STIC was caused by the low specificity of IFA IgM. Neither STIC nor IFA IgM can be used as reference standards against which to evaluate alternative diagnostic tests. Further evaluation of new diagnostic tests should be done with a carefully selected set of diagnostic tests and appropriate statistical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.