Oscillations of gene expression and physiological activity in suprachiasmatic nucleus (SCN) neurons result from autoregulatory feedback loops of circadian clock gene transcription factors. In the present experiment, we have determined the pattern of PERIOD1 (PER1), PERIOD2 (PER2), and CLOCK expression within neuroendocrine dopaminergic (DAergic) neurons (NDNs) of ovariectomized (OVX) rats. We have also determined the effects of per1, per2, and clock mRNA knockdown in the SCN with antisense deoxyoligonucleotides (AS-ODN) on DA release from NDNs. Diurnal rhythms of PER1 and PER2 expression in tuberoinfundibular DAergic (TIDA) and periventricular hypophyseal DAergic (PHDA) neurons, peaked at circadian time (CT)18 and CT12, respectively. Rhythms of PER1 expression in tuberhypophyseal neuroendocrine DAergic (THDA) neurons were undetectable. Rhythms of PER2 expression were found in all three populations of NDNs, with greater levels of PER2 expression between CT6 and CT12. AS-ODN injections differentially affected DA turnover in the axon terminals of the median eminence (ME), neural lobe (NL) and intermediate lobe (IL) of the pituitary gland, resulting in a significant decrease in DA release in the early subjective night in the ME (TIDA), a significant increase in DA release at the beginning of the day in the IL (PHDA), and no effect in the NL (THDA). AS-ODN-treatment induced a rhythm of DA concentration in the anterior lobe, with greater DA levels in the middle of the day. These data suggest that clock gene expression, particularly PER1 and PER2, within NDNs may act to modulate diurnal rhythms of DA release from NDNs in the OVX rat.prolactin; dopamine; suprachiasmatic nucleus; hypothalamus DOPAMINE (DA) of hypothalamic origin exerts tonic inhibitory control over prolactin (PRL) secretion (for review see Ref. 17). DA is released directly into hypothalamo-hypophyseal portal blood from three populations of neuroendocrine DAergic neurons (NDNs) (5, 17). These subpopulations include the tuberoinfundibular DAergic (TIDA) and tuberohypophyseal neuroendocrine DAergic (THDA,A12) neurons with cell bodies in the arcuate nucleus (ARN) and periventricular hypophyseal DAergic (PHDA,A14) neurons with cell bodies in the periventricular region (5, 17). THDA and PHDA axons traverse the pituitary stalk and terminate on fenestrated short portal vessels within the neural (NL) and intermediate (IL) lobes of the pituitary gland (21). TIDA axons terminate on fenestrated capillary beds within the external zone of the median eminence (ME) that drain into long portal vessels, transporting DA to the anterior lobe (AL) of the pituitary gland (8, 10). TIDA neurons are well established as the primary PRL inhibitory neurons, although growing importance has been assigned to both THDA and PHDA neurons in the regulation of PRL secretion (13, 21, 43, 52, 61).We have observed diurnal rhythms of DA turnover in the nerve terminals of TIDA, THDA, and PHDA neurons in the ovariectomized (OVX) rat (57, 58). Whereas both TIDA and PHDA neurons display circadian ...
Copper toxicity causes hepatic damage that can lead to the development of hepatocarcinoma. Similarly, copper deficiency has been reported to increase hepatocyte tumorigenesis. Thus, the objective of this work was to explore the role of copper toxicity and deficiency in the regulation of the tumor suppressor protein p53. Using Northern analysis, Western analysis, immunocytochemistry and the human hepatoma cell line Hep G2, this work showed that elevations in hepatocyte copper consistent with Wilson's disease (5.7-fold increase) induced p53 mRNA and confirmed that copper toxicity is correlated with apoptotic cell death. However, Western analysis and immunocytochemistry showed that post-transcriptional mechanisms are a significant part of the process, with p53 translocation from the cytosol into the nucleus of copper-treated cells. Treatment of Hep G2 cells with increasing concentrations of the copper chelator tetraethylenepentamine (TEPA, 0-50 micromol/L, 48 h) reduced cellular copper and increased mean p53 mRNA abundance by over fourfold with nuclear translocation of the wild-type protein. However, TEPA treatment did not result in a loss of cell viability or appear to induce apoptosis.
In female rats, estradiol (E(2)) and suckling induce prolactin (PRL) secretion. This involves inhibition of hypothalamic dopaminergic tone and stimulation by a PRL-releasing hormone, possibly oxytocin (OT). Infusing an OT antagonist (OTA) i.v., we evaluated the role of OT on suckling- and E(2)-induced PRL secretion. Three days after parturition at 0900 h, lactating dams were fitted with 24-h osmotic minipumps filled with saline or OTA. On d 5 of lactation, pups were separated from their dams for 6 h. Immediately or 20 min after the resumption of suckling, dam trunk blood was collected. Also, ovariectomized (OVX) rats were treated with E(2) (OVE) and OTA at 1000 h on d 1. Blood samples were obtained from 1300 to 2100 h on d 2 for PRL measurements. Additionally, OVX rats were evaluated on d 2 after receiving progesterone (P(4)). OTA blocked suckling and E(2)-induced release of PRL but not that induced by E(2)+P(4). Pups from treated dams failed to gain weight when allowed to nurse for 20 min on d 5 but gained more than 7 g when nursed on d 7 of lactation, indicating that the OTA was active 48 h later. Western blot analysis showed that E(2) treatment increased OT receptors in the anterior pituitary when compared with OVX animals. No further increase was observed in response to the P(4), suggesting that the enhancing effect of P(4) on E(2)-induced PRL release may act through mechanisms independent of OT. These data demonstrate the role of OT in the control of suckling and steroid-induced PRL secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.