The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre-eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. Perturbation of several plastid-located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesisrelated genes. Characterization of arabidopsis gun (genomes uncoupled) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis-related proteins.
A population genetic approach was used to explore the evolutionary biology of the parasitic angiosperm Arceuthobium americanum Nutt. ex Engelm. (Viscaceae). Arceuthobium americanum infects three principal hosts and has the most extensive geographical range of any North American dwarf mistletoe. Based on the lack of apparent morphological and phenological differences between populations of A. americanum, past researchers have found no evidence for recognizing infraspecific taxa. In this study, molecular analysis using amplified fragment length polymorphism (AFLP) analysis indicated that A. americanum is divided into three distinct genetic races, each associated with a different host taxon in regions of allopatry: (i) Pinus banksiana in western Canada; (ii) Pinus contorta var. murrayana in the Sierra Nevada and Cascade Mountain ranges in the western US; and (iii) Pinus contorta var. latifolia in the western US and Canada. These observations suggest that host identity, geographical isolation and environmental factors have contributed to race formation in A. americanum. The lack of fine-scale patterning within each of the A. americanum races is attributed to random dispersal of seeds over long distances by animal vectors. Historical factors such as glaciations and founder events have also influenced structuring and genetic diversity in A. americanum populations. Given sufficient time, it is possible that these races will become reproductively isolated and undergo speciation.
ABSTRACT. The quantitative protargol stain (QPS) is used to estimate ciliate biomass and species composition from mixed field samples. Length, width, breadth and volume of live Euplotes sp., Eutintinnus sp., Strobilidium spiralis, Strombidium acutum, and Gymnodinium sanguineum were compared with 0.6% acid Lugol's fixed, 5% Bouin's fixed, and QPS cells. Cells shrank due to treatments (ANOVA and Tukey's test, α= 0.05). Protistan post‐fixation cell volume (as a percentage of live volume) was 55%‐80% for acid Lugol's fixed, 40%‐70% for Bouin's fixed, and 30%‐65% for QPS. Each species shrank to a different extent; cytostructural elements apparently alter the effect of fixation. Egestion is likely not the main cause of shrinkage since the autotroph, G. sanguineum, shrank to the same extent as the heterotrophs when stained by QPS. If field studies do not consider fixation effects on cell size, biomass may be underestimated. We recommend, for studies on planktonic ciliates, either acid Lugol's and QPS be used concurrently or QPS be used alone and biovolume values divided by 0.4 to correct for shrinkage. We stress that this is a rough estimate as this value ranges from 0.3 to 0.45 for planktonic protists.
Ciliates infected 0.25% of adult Aedes sp. mosquitoes collected in Guelph, Ontario. Morphological observations of live and stained specimens indicated that these ciliates belonged to the Tetrahymena pyriformis sibling species complex. This study provides the first well-documented case of insects being infected by a species in the T. pyriformis complex. Mating experiments demonstrated that these "mosquito" ciliates were reproductively isolated from previously described biological species in the complex, and are designated a new species, Tetrahymena empidokyrea n.sp. Phylogenetic analysis using SSrDNA sequences suggested that T. empidokyrea n.sp. is either basal to all species in the genus Tetrahymena or basal to one of the two main lineages in that genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.