Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes.
ThiobaciUus thiooxidans cells oxidized elemental sulfur to sulfite, with 1 mol of 02 consumption per mol of sulfur oxidized to sulfite, when the oxidation of sulfite was inhibited with 2-n-heptyl-4-hydroxyquinoline N-oxide.
Several soluble electron transfer proteins were isolated and characterized from the marine purple-sulfur bacterium Chromatium purpuratum. The C. purpuratum flavocytochrome c is similar in molecular mass (68 kDa) and isoelectric point (6.5) to flavocytochromes isolated from other phototrophs. Redox titrations of the flavocytochrome c hemes show two components with midpoint potential values of +15 and -120 mV, behavior similar to that observed with the flavocytochrome isolated from the thermophilic Chromatium tepidum. Moreover, N-terminal amino acid sequence analysis of both the flavin and the cytochrome subunit indicates substantial homology to the primary structure of the flavocytochrome c of Chromatium vinosum. In contrast, the C. purpuratum high-potential iron-sulfur protein (HiPIP) differs from those isolated from other photosynthetic bacteria in its relatively high midpoint potential (+390 mV) and the possibility that it exists as a dimer in solution. Two low molecular mass c-type cytochromes were also characterized. One appears to be a high-potential (+310 mV) c8-type cytochrome. Amino acid sequencing suggests that the second cytochrome may be a homologue of the low-potential cytochrome c-551, previously described in two species of Ectothiorhodospirillaceae.
Crystals of a carotenoid protein from the cyanobacterium Arthrospira maxima have been grown in space group C2 with unit-cell dimensions a = 219.6, b = 40.3, c --75.5 A and fl=95.5 °. The crystals diffract X-rays to 2.3 A resolution and display unusual optical properties in polarized light that suggest that all of the carotenoid molecules in the crystals are oriented similarly. A slight increase in the concentration of a crystallization additive in the mother liquor induces macroscopic twinning, which is also visible when the crystals are illuminated with polarized light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.