Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified isofunctional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.evolution | specificity | phosphatase | substrate screen | promiscuity S ince the first genomes were sequenced, there has been an exponential increase in the number of protein sequences deposited into databases worldwide. At the time of this writing the UniProtKB/TrEMBL database contains over 32 million protein sequences. Although this increase in sequence data has dramatically enhanced our understanding of the genomic organization of organisms, as the number of protein sequences grows, the proportion of firm functional assignments diminishes. Traditionally, methods of functional annotation involve comparing sequence identity between experimentally characterized proteins and newly sequenced ones, typically via BLAST (1). In cases where significant sequence similarity cannot be ascertained, proteins are annotated as "hypothetical" or "putative." Moreover, the decrease in sequence identity leads to an increased uncertainty in functional assignment, especially as the phylogenetic distance between organisms grows, limiting iso-functional ortholog discovery.As the number of newly sequenced genomes grows larger, more protein sequences are likely to be misannotated, oftentimes resulting in the propagation of incorrect functional annotation across newly identified sequences. To tackle the problem of unannotated or misannotated proteins, newer methods for computational assignment have been created with varying degrees of success (2). Although these methods outperform historical methods, continued improvement is necessary to ensure accurate annotation of function (2). A greater swath of functional space can be covered by screening substrates in a high-throughput manner on multiple enzymes from a family (3, 4). Family-wide substrate profiling offers a data-rich resource. The use of sparse screening of sequence space and a diversified library permits the determination of substrate specificity profiles to provide a familywide view of the range of substrates...
Catalytic promiscuity and substrate ambiguity are keys to evolvability, which in turn is pivotal to the successful acquisition of novel biological functions. Action on multiple substrates (substrate ambiguity) can be harnessed for performance of functions in the cell that supersede catalysis of a single metabolite. These functions include proofreading, scavenging of nutrients, removal of antimetabolites, balancing of metabolite pools, and establishing system redundancy. In this review, we present examples of enzymes that perform these cellular roles by leveraging substrate ambiguity and then present the structural features that support both specificity and ambiguity. We focus on the phosphatases of the haloalkanoate dehalogenase superfamily and the thioesterases of the hotdog fold superfamily.In the 1990s, a series of studies on the evolution of catalysis in protein fold families helped define contemporary understanding of enzymes as potentially promiscuous catalysts; the analyses of these enzyme superfamilies suggested that certain folds showed higher variability than expected with regard to the chemistries that can be catalyzed or the substrates that can be acted on (1-11). To summarize, the current model holds that enzyme families grow as a result of gene duplication coupled with the acquisition of an advantageous new function. Because the backbone folds, and thus, the catalytic scaffolds are inherited, so is the chemical trait that underlies the intrinsic catalytic functions of all family members. In enzyme families, evidence can be found for low level intrinsic activity associated with one or more extant members, co-existing with the high level of activity unique to the subject enzyme (see for instance, the enolase and alkaline phosphatase enzyme superfamilies (12, 13)). The ability to carry out such alternate chemistry is termed catalytic promiscuity. The plausible link between catalytic promiscuity and evolvability has been explored in previous publications (for recent coverage and reviews of this topic, see Refs. 14 -17).The most commonly encountered observation of promiscuity involves the catalysis of one type of chemistry with many different substrates. Jensen (18) referred to this trait as "substrate ambiguity," and this is the name we will use. Herein, we examine the selective advantage associated with activity toward multiple substrates by highlighting specific examples of enzymes for which the level of substrate ambiguity runs high to fulfill specific roles in the cell. We use as examples enzymes from the haloalkanoate dehalogenase (HAD) 3 superfamily and the thioesterases of the hotdog fold superfamily. In addition, we dissect the architectures of enzymes from these families to discover underlying structural sources of specificity and substrate ambiguity. Screening to Assess Substrate AmbiguityIn vitro enzyme activity measurements carried out with a structurally diverse library of potential substrates allow one to generate a substrate specificity profile for the enzyme of interest. However, the mo...
BackgroundPersonalized therapy provides the best outcome of cancer care and its implementation in the clinic has been greatly facilitated by recent convergence of enormous progress in basic cancer research, rapid advancement of new tumor profiling technologies, and an expanding compendium of targeted cancer therapeutics.MethodsWe developed a personalized cancer therapy (PCT) program in a clinical setting, using an integrative genomics approach to fully characterize the complexity of each tumor. We carried out whole exome sequencing (WES) and single-nucleotide polymorphism (SNP) microarray genotyping on DNA from tumor and patient-matched normal specimens, as well as RNA sequencing (RNA-Seq) on available frozen specimens, to identify somatic (tumor-specific) mutations, copy number alterations (CNAs), gene expression changes, gene fusions, and also germline variants. To provide high sensitivity in known cancer mutation hotspots, Ion AmpliSeq Cancer Hotspot Panel v2 (CHPv2) was also employed. We integrated the resulting data with cancer knowledge bases and developed a specific workflow for each cancer type to improve interpretation of genomic data.ResultsWe returned genomics findings to 46 patients and their physicians describing somatic alterations and predicting drug response, toxicity, and prognosis. Mean 17.3 cancer-relevant somatic mutations per patient were identified, 13.3-fold, 6.9-fold, and 4.7-fold more than could have been detected using CHPv2, Oncomine Cancer Panel (OCP), and FoundationOne, respectively. Our approach delineated the underlying genetic drivers at the pathway level and provided meaningful predictions of therapeutic efficacy and toxicity. Actionable alterations were found in 91 % of patients (mean 4.9 per patient, including somatic mutations, copy number alterations, gene expression alterations, and germline variants), a 7.5-fold, 2.0-fold, and 1.9-fold increase over what could have been uncovered by CHPv2, OCP, and FoundationOne, respectively. The findings altered the course of treatment in four cases.ConclusionsThese results show that a comprehensive, integrative genomic approach as outlined above significantly enhanced genomics-based PCT strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0313-0) contains supplementary material, which is available to authorized users.
The explosion of protein sequence information requires that current strategies for function assignment must evolve to complement experimental approaches with computationally-based function prediction. This necessitates the development of strategies based on the identification of sequence markers in the form of specificity determinants and a more informed definition of orthologues. Herein, we have undertaken the function assignment of the unknown Haloalkanoate Dehalogenase superfamily member BT2127 (Uniprot accession # Q8A5V9) from Bacteroides thetaiotaomicron using an integrated bioinformatics/structure/mechanism approach. The substrate specificity profile and steady-state rate constants of BT2127 (with kcat/Km value for pyrophosphate of ∼1 × 105 M−1 s−1), together with the gene context, supports the assigned in vivo function as an inorganic pyrophosphatase. The X-ray structural analysis of the wild-type BT2127 and several variants generated by site-directed mutagenesis shows that substrate discrimination is based, in part, on active site space restrictions imposed by the cap domain (specifically by residues Tyr76 and Glu47). Structure guided site directed mutagenesis coupled with kinetic analysis of the mutant enzymes identified the residues required for catalysis, substrate binding, and domain-domain association. Based on this structure-function analysis, the catalytic residues Asp11, Asp13, Thr113, and Lys147 as well the metal binding residues Asp171, Asn172 and Glu47 were used as markers to confirm BT2127 orthologues identified via sequence searches. This bioinformatic analysis demonstrated that the biological range of BT2127 orthologue is restricted to the phylum Bacteroidetes/Chlorobi. The key structural determinants in the divergence of BT2127 and its closest homologue β-phosphoglucomutase control the leaving group size (phosphate vs. glucose-phosphate) and the position of the Asp acid/base in the open vs. closed conformations. HADSF pyrophosphatases represent a third mechanistic and fold type for bacterial pyrophosphatases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.