BackgroundPersonalized therapy provides the best outcome of cancer care and its implementation in the clinic has been greatly facilitated by recent convergence of enormous progress in basic cancer research, rapid advancement of new tumor profiling technologies, and an expanding compendium of targeted cancer therapeutics.MethodsWe developed a personalized cancer therapy (PCT) program in a clinical setting, using an integrative genomics approach to fully characterize the complexity of each tumor. We carried out whole exome sequencing (WES) and single-nucleotide polymorphism (SNP) microarray genotyping on DNA from tumor and patient-matched normal specimens, as well as RNA sequencing (RNA-Seq) on available frozen specimens, to identify somatic (tumor-specific) mutations, copy number alterations (CNAs), gene expression changes, gene fusions, and also germline variants. To provide high sensitivity in known cancer mutation hotspots, Ion AmpliSeq Cancer Hotspot Panel v2 (CHPv2) was also employed. We integrated the resulting data with cancer knowledge bases and developed a specific workflow for each cancer type to improve interpretation of genomic data.ResultsWe returned genomics findings to 46 patients and their physicians describing somatic alterations and predicting drug response, toxicity, and prognosis. Mean 17.3 cancer-relevant somatic mutations per patient were identified, 13.3-fold, 6.9-fold, and 4.7-fold more than could have been detected using CHPv2, Oncomine Cancer Panel (OCP), and FoundationOne, respectively. Our approach delineated the underlying genetic drivers at the pathway level and provided meaningful predictions of therapeutic efficacy and toxicity. Actionable alterations were found in 91 % of patients (mean 4.9 per patient, including somatic mutations, copy number alterations, gene expression alterations, and germline variants), a 7.5-fold, 2.0-fold, and 1.9-fold increase over what could have been uncovered by CHPv2, OCP, and FoundationOne, respectively. The findings altered the course of treatment in four cases.ConclusionsThese results show that a comprehensive, integrative genomic approach as outlined above significantly enhanced genomics-based PCT strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0313-0) contains supplementary material, which is available to authorized users.
BackgroundThe invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression.ResultsIn this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects.We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively.ConclusionsDisease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants.
Along with the increasing demands for the applications running on the wireless sensor network (WSN), energy consumption and congestion become two main problems to be resolved urgently. However, in most scenes, these two problems aren't considered simultaneously. To address this issue, in this paper a solution that sufficiently maintains energy efficiency and congestion control for energy-harvesting WSNs is presented. We first construct a queuing network model to detect the congestion degree of nodes. Then with the help of the principle of flow rate in hydraulics, an optimizing routing algorithm based on congestion control (CCOR) is proposed. The CCOR algorithm is designed by constructing two functions named link gradient and traffic radius based on node locations and service rate of packets. Finally, the route selection probabilities for each path are allocated according to the link flow rates. The simulation results show that the proposed solution significantly decreases the packet loss rate and maintains high energy efficiency under different traffic load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.