Abstract:The economic dispatch problem of a virtual power plant (VPP) is becoming non-convex for distributed generators' characteristics of valve-point loading effects, prohibited operating zones, and multiple fuel options. In this paper, the economic dispatch model of VPP is established and then solved by a distributed randomized gradient-free algorithm. To deal with the non-smooth objective function, its Gauss approximation is used to construct distributed randomized gradient-free oracles in optimization iterations. A projection operator is also introduced to solve the discontinuous variable space problem. An example simulation is implemented on a modified IEEE-34 bus test system, and the results demonstrate the effectiveness and applicability of the proposed algorithm.
A virtual power plant (VPP) is aimed to integrate distributed energy resources (DERs). To solve the VPP economic dispatch (VPED) problem, the power supply-demand balance, power transmission constraints, and power output constraints of each DER must be considered. Meanwhile, the impacts of communication time delays, channel noises, and the time-varying topology on the communication networks cannot be ignored. In this paper, a VPED model is established and a distributed primal-dual sub-gradient method (DPDSM) is employed to address the presented VPED model. Compared with the traditional centralized dispatch, the distributed dispatch has the advantages of lower communication costs and stronger system robustness, etc. Simulations are realized in the modified IEEE-34 and IEEE-123 bus test VPP systems and the results indicate that the VPED strategy via DPDSM has the superiority of better convergence, more economic profits, and stronger system stability.
Abstract:In this paper, a distributed randomized gradient-free algorithm (DRGF) is employed to solve the complex non-convex economic dispatch problem whose non-convex constraints include valve-point loading effects, prohibited operating zones, and multiple fuel options. The DRGF uses the Gauss approximation, smoothing parameters, and a random sequence to construct distributed randomized gradient-free oracles. By employing a consensus procedure, generation units can gather local information through local communication links and then process the economic dispatch data in a distributed iteration format. Based on the principle of projection optimization, a projection operator is adopted in the DRGF to deal with the discontinuous solution space. The effectiveness of the proposed approach in addressing the non-convex economic dispatch problem is demonstrated by simulations implemented on three standard test systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.