Scrub typhus and tick-borne spotted fever group (SFG) rickettsioses are transmitted by chiggers (larval trombiculid mites) and hard ticks, respectively. We assessed exposure to these disease vectors by extensively sampling both chiggers and ticks and their small mammal hosts in eastern Taiwan during 2007 and 2008. The striped field mouse Apodemus agrarius Pallas (Rodentia: Muridae) was the most common of the small mammals (36.1% of 1393 captures) and presented the highest rate of infestation with both chiggers (47.8% of 110 760) and ticks (78.1% of 1431). Leptotrombidium imphalum Vercammen-Grandjean & Langston (Trombidiformes: Trombiculidae) and immature Rhipicephalus haemaphysaloides Supino (Ixodida: Ixodidae) were the most abundant chiggers (84.5%) and ticks (>99%) identified, respectively. Immunofluorescent antibody assay revealed high seropositive rates of rodents against Orientia tsutsugamushi Hyashi (Rickettsiales: Rickettsiaceae), the aetiological agent of scrub typhus (70.0% of 437 rodents), and tick-borne SFG rickettsiae (91.9% of 418 rodents). The current study represents a first step towards elucidating the potential hosts and vectors in the enzootic transmission of O. tsutsugamushi and tick-borne SFG rickettsiae in Taiwan. Further studies should focus on characterizing pathogens in L. imphalum and R. haemaphysaloides, as well as the proclivity of both vectors to humans. Uncovering the main hosts of adult ticks is also critical for the prevention of SFG rickettsial infections.
BackgroundInternational seaports are hotspots for disease invasion and pathogens can persist in seaports even after ports are abandoned. Transmitted by fleas infected by Rickettsia typhi, murine typhus, a largely neglected and easily misdiagnosed disease, is known to occur primarily in large seaports. However, the significance of seaports in the occurrence of murine typhus has never been validated quantitatively.Methodology/Principal findingsWe studied the spatial distribution of murine typhus, a notifiable disease, in Taiwan. We investigated whether risk of infection was correlated with distance to international seaports and a collection of environmental and socioeconomic factors, using a Bayesian negative binomial conditionally autoregressive model, followed with geographically weighted regression. Seaports that are currently in use and those that operated in the 19th century for trade with China, but were later abandoned due to siltation were analyzed. A total of 476 human cases of murine typhus were reported during 2000–2014 in the main island of Taiwan, with spatial clustering in districts in southwest and central-west Taiwan. A higher incidence rate (case/population) was associated with a smaller distance to currently in-use international seaports and lower rainfall and temperature, but was uncorrelated with distance to abandoned ports. Geographically weighted regression revealed a geographic heterogeneity in the importance of distance to in-use seaports near the four international seaports of Taiwan.Conclusions/SignificanceOur study suggests that murine typhus is associated with international seaports, especially for those with large trading volume. Thus, one of the costs of global trade in Taiwan might be elevated risks of murine typhus. Globalization has accelerated the spread of infectious diseases, but the burden of disease varies geographically, with regions surrounding major international seaports warranting particular surveillance.
Abstract. Rickettsia typhi and Rickettsia felis (Rickettsiales: Rickettsiaceae) are two rickettsiae principally transmitted by fleas, but the detection of either pathogen has rarely been attempted in Taiwan. Of 2048 small mammals trapped in eastern Taiwan, Apodemus agrarius Pallas (24.5%) and Mus caroli Bonhote (24.4%) (both: Rodentia: Muridae) were the most abundant, and M. caroli hosted the highest proportion of fleas (63.9% of 330 fleas). Two flea species were identified: Stivalius aporus Jordan and Rothschild (Siphonaptera: Stivaliidae), and Acropsylla episema Rothschild (Siphonaptera: Leptopsyllidae). Nested polymerase chain reaction targeting parts of the ompB and gltA genes showed six fleas to be positive for Rickettsia spp. (3.8% of 160 samples), which showed the greatest similarity to R. felis, Rickettsia japonica, Rickettsia conorii or Rickettsia sp. TwKM01. Rickettsia typhi was not detected in the fleas and Rickettsia co-infection did not occur. Both flea species were more abundant during months with lower temperatures and less rainfall, and flea abundance on M. caroli was not related to soil hardness, vegetative height, ground cover by litter or by understory layer, or the abundance of M. caroli. Our study reveals the potential circulation of R. felis and other rickettsiae in eastern Taiwan, necessitating further surveillance of rickettsial diseases in this region. This is especially important because many novel rickettsioses are emerging worldwide.
The genus Rickettsia is the causative agent of several rickettsial diseases that are primarily transmitted by hard ticks. The occurrence of Rickettsia in chigger mites, which are vectors of scrub typhus in the western Pacific region, has been infrequently investigated. We identified Rickettsia spp. in chiggers collected from small mammals in six counties of Taiwan. Moreover, by capitalising on parallel Rickettsia detections on small mammals and their infested ticks and fleas, we were able to identify Rickettsia spp. that suggested more intimate associations with chigger mites. Rickettsia detection rates in 318 pools of chiggers were 21.7% and 22.3% when based on the ompB and gltA gene, respectively. Overall, we identified six (based on the ompB gene) and eight (gltA gene) Rickettsia species. Approximately half of the sequenced species were most similar to Rickettsia sp. clone MB74‐1 (ompB gene) and Rickettsia sp. TwKM02 (gltA gene). Furthermore, both species were either infrequently or never identified in small mammals, ticks and fleas, which suggests that chigger mites might be the primary host of both rickettsiae. Whether both species are pathogenic to humans remains to be studied. They may also be microbial endosymbionts of chigger mites, with their potential effects on the pathogenicity of the aetiologic agent of scrub typhus deserving further investigations.
There is an error in reference 55. The correct reference is: Teoh YT, Hii SF, Graves S, Rees R, Stenos J, Traub RJ. Evidence of exposure to Rickettsia felis in Australian patients. One Health. 2016; 2: 95-98.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.