A significant consequence of Typhoon Morakot in August 2009 was the production of vast volumes of driftwood in Pacific Asia. We have quantified the flux of this coarse woody debris (CWD) to the oceans from typhoontriggered landslides in Taiwan, where Morakot made landfall, by combining remote sensing (using FORMOSAT-2 imagery and aerial photography), analysis of forest biomass, and field observations. A total of 3.8-8.4 Tg CWD was transported to the oceans, carrying 1.8-4.0 Tg of organic carbon. In addition to the local effects on the marine and coastal environment from such a highly concentrated flux of carbon and nutrients, storm-driven mobilization of CWD may represent a significant, if infrequent, transfer of terrestrial biomass to the oceans. If the frequency of relatively rare, extreme storms such as Morakot increases in a changing climate, this transport mechanism may play an important role in feedbacks between global climate, storm intensity, and carbon cycling.
We examined the typhoon wind disturbance regime of the Fu‐Shan Experimental Forest in northeastern Taiwan. Mean number of typhoons passing within 200 kilometers of Taipei (40 kilometers from the site) was 1.4 per year. Category 4 and 5 typhoons, which are intense enough to uproot large numbers of trees, occurred every 8.3 and 12.5 years respectively, although it is likely that some category 4 and 5 typhoons did not produce extensive blowdowns at Fu‐Shan because the area of maximum winds missed the study site. Uprooting was more common than snapped boles; the most common damage to trees, however, was probably defoliation, although this damage was not quantified in the current study. Thirty‐five percent of wind‐damaged trees were associated with a gap. Six percent of the land area was in gaps. Canopy turnover time was calculated at 175 years when all gaps ≤ 9 years old were included in the calculation, but the time decreased when older gaps were excluded from the calculation. Turnover time was somewhat higher than calculated for other tropical forests. Because turnover time increases as the percent of land in gaps decreases, the short life span of gaps at Fu‐Shan probably contributed to our higher calculated time. Probability of being damaged was not related to tree species identity, and only a few species of trees were found regenerating in gaps. Principal Components Analysis indicated that damaged trees varied largely in treefall orientation and aspect; gaps varied primarily in aspect and in gap size.
This content analysis of articles in the Social Science Citation Index journals from 1995 to 2009 was conducted to provide science educators with empirical evidence regarding the effects of scaffolding on science learning. It clarifies the definition, design, and implementation of scaffolding in science classrooms and research studies. The results show important cross-study evidence that most researchers have adopted a qualitative approach (67.44%), focused on learning context (72.09%), and used high school students as participants (53.49%). In designing scaffoldings, researchers have shown a preference for long-term explicit scaffolding using multiple representations to promote procedural and strategic skills and alternative assessments of learner performance. Nevertheless, scaffolding issues related to teacher education are unexpectedly few (11.63%) in empirical research. The results also indicate that there are too few studies to guide researchers in considering fading scaffolds for active learning (9.30%). Future directions and suggestions toward conducting research regarding scaffolding are provided.
We examined the role of thromboxane A2 (TXA2) in LPS-induced hyperresponsiveness of hepatic portal circulation to endothelins (ETs) and whether Kupffer cells are the primary source of TXA2 release in response to ET-1 in endotoxemia. After 6 h of LPS (1 mg/kg body wt ip) or saline (control), liver was isolated and perfused with recirculating Krebs-Henseleit bicarbonate buffer at a constant flow rate (100 ml.min(-1).kg body wt(-1)). ET-1 (10 pmol/min) was infused for 10 min. Portal pressure (PP) was continuously monitored during perfusion. Perfusate was sampled for enzyme immunoassay of thromboxane B2 (TXB2; the stable metabolite of TXA2) and lactate dehydrogenase (LDH) assay. ET-1 infusion resulted in a significantly greater increase of PP in the LPS group than in controls. Both TXA2 synthase inhibitor furegrelate (Fureg) and TXA2 receptor antagonist SQ-29548 (SQ) substantially blocked enhanced increase of PP in the LPS group (4.9 +/- 0.4 vs. 3.6 +/- 0.5 vs. 2.6 +/- 0.6 mmHg for LPS alone, LPS + Fureg, and LPS + SQ, respectively; P < 0.05) while having no significant effect on controls. GdCl3 for inhibition of Kupffer cells had similar effects (4.9 +/- 0.4 mmHg vs. 2.9 +/- 0.4 mmHg for LPS alone and GdCl3 + LPS, respectively; P < 0.05). In addition, the attenuated PP after ET-1 was found concomitantly with significantly decreased releases of TXB2 and LDH in LPS rats treated with Fureg, SQ, and GdCl3 (886.6 +/- 73.4 vs. 110.8 +/- 0.8 vs. 114.8 +/- 54.7 vs. 135.2 +/- 45.2 pg/ml, respectively; P < 0.05). After 6 h of LPS, Kupffer cells in isolated cell preparations released a significant amount of TXA2 in response to ET-1. These results clearly indicate that hyperresponsiveness of hepatic portal circulation to ET-1 in endotoxemia is mediated at least in part by TXA2-induced receptor activation, and Kupffer cells are likely the primary source of increased TXA2 release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.