We propose an auxiliary strategy, called per-user caching, for locating users who move from place to place while using Personal Communications Services (PCS). The caching strategy augments the basic location strategy proposed in existing standards such as GSM and IS-41, with the objective of reducing network signaling and database loads in exchange for increased CPU processing and memory costs. Since technology trends are driving the latter costs down, the auxiliary strategy will become increasingly attractive. The idea behind caching is to reuse the information about a called user's location for subsequent calls to that user, and is useful for those users who receive calls frequently relative to the rate at which they change registration areas. This idea attempts to explqit the spatial and temporal locality in calls received by users, similar to the idea of exploiting locality of file access in computer systems. We use a reference PCS architecture and the notion of a user's local call-to-mobility ratio (LCMR) to quantify the costs and benefits of using caching and classes of users for whom it would be beneficial. We also present two simple algorithms for estimating users' LCMR and the situation in which each is preferable. We show that under a variety of assumptions caching is likely to yield significant net benefits in terms of reduced signaling network traffic and database loads.
Copper interconnects in modern integrated circuits require a barrier layer to prevent Cu diffusion into surrounding dielectrics. However, conventional barrier materials like TaN are highly resistive compared to Cu and will occupy a large fraction of the crosssection of ultra-scaled Cu interconnects due to their thickness scaling limits at 2-3 nm, which will significantly increase the Cu line resistance. It is well understood that ultrathin, effective diffusion barriers are required to continue the interconnect scaling. In this study, a new class of two-dimensional (2D) materials, hexagonal boron nitride (h-BN) and molybdenum disulfide (MoS 2 ), is explored as alternative Cu diffusion barriers. Based on time-dependent dielectric breakdown measurements and scanning transmission electron microscopy imaging coupled with energy dispersive X-ray spectroscopy and electron energy loss spectroscopy characterizations, these 2D materials are shown to be promising barrier solutions for Cu interconnect technology. The predicted lifetime of devices with directly deposited 2D barriers can achieve three orders of magnitude improvement compared to control devices without barriers.
As the challenges in continued scaling of the integrated circuit technology escalate every generation, there is an urgent need to find viable solutions for both the front-end-of-line (transistors) and the back-end-of-line (interconnects). For the interconnect technology, it is crucial to replace the conventional barrier and liner with much thinner alternatives so that the current driving capability of the interconnects can be maintained or even improved. Due to the inherent atomically thin body thicknesses, 2D materials have recently been proposed and explored as Cu diffusion barrier alternatives. In this Perspective article, a variety of 2D materials that have been studied, ranging from graphene, h-BN, MoS2, WSe2 to TaS2, will be reviewed. Their potentials will be evaluated based on several criteria, including fundamental material properties as well as the feasibility for technology integration. Using TaS2 as an example, we demonstrate a large set of promising properties and point out that there remain challenges in the integration aspects with a few possible solutions waiting for validation. Applications of 2D materials for other functions in Cu interconnects and for different metal types will also be introduced, including electromigration, cobalt interconnects, and radio-frequency transmission lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.