OpenMM is a software toolkit for performing molecular simulations on a range of high performance computing architectures. It is based on a layered architecture: the lower layers function as a reusable library that can be invoked by any application, while the upper layers form a complete environment for running molecular simulations. The library API hides all hardware-specific dependencies and optimizations from the users and developers of simulation programs: they can be run without modification on any hardware on which the API has been implemented. The current implementations of OpenMM include support for graphics processing units using the OpenCL and CUDA frameworks. In addition, OpenMM was designed to be extensible, so new hardware architectures can be accommodated and new functionality (e.g., energy terms and integrators) can be easily added.
Movement is fundamental to human and animal life, emerging through interaction of complex neural, muscular, and skeletal systems. Study of movement draws from and contributes to diverse fields, including biology, neuroscience, mechanics, and robotics. OpenSim unites methods from these fields to create fast and accurate simulations of movement, enabling two fundamental tasks. First, the software can calculate variables that are difficult to measure experimentally, such as the forces generated by muscles and the stretch and recoil of tendons during movement. Second, OpenSim can predict novel movements from models of motor control, such as kinematic adaptations of human gait during loaded or inclined walking. Changes in musculoskeletal dynamics following surgery or due to human–device interaction can also be simulated; these simulations have played a vital role in several applications, including the design of implantable mechanical devices to improve human grasping in individuals with paralysis. OpenSim is an extensible and user-friendly software package built on decades of knowledge about computational modeling and simulation of biomechanical systems. OpenSim’s design enables computational scientists to create new state-of-the-art software tools and empowers others to use these tools in research and clinical applications. OpenSim supports a large and growing community of biomechanics and rehabilitation researchers, facilitating exchange of models and simulations for reproducing and extending discoveries. Examples, tutorials, documentation, and an active user forum support this community. The OpenSim software is covered by the Apache License 2.0, which permits its use for any purpose including both nonprofit and commercial applications. The source code is freely and anonymously accessible on GitHub, where the community is welcomed to make contributions. Platform-specific installers of OpenSim include a GUI and are available on simtk.org.
Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnet resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% anda minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified.
The current paradigm for surgery planning for the treatment of cardiovascular disease relies exclusively on diagnostic imaging data to define the present state of the patient, empirical data to evaluate the efficacy of prior treatments for similar patients, and the judgement of the surgeon to decide on a preferred treatment. The individual variability and inherent complexity of human biological systems is such that diagnostic imaging and empirical data alone are insufficient to predict the outcome of a given treatment for an individual patient. We propose a new paradigm of predictive medicine in which the physician utilizes computational tools to construct and evaluate a combined anatomic/physiologic model to predict the outcome of alternative treatment plans for an individual patient. The predictive medicine paradigm is implemented in a software system developed for Simulation-Based Medical Planning. This system provides an integrated set of tools to test hypotheses regarding the effect of alternate treatment plans on blood flow in the cardiovascular system of an individual patient. It combines an Internet-based user interface developed using Java and VRML, image segmentation, geometric solid modeling, automatic finite element mesh generation, computational fluid dynamics, and scientific visualization techniques. This system is applied to the evaluation of alternate, patient-specific treatments for a case of lower extremity occlusive cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.