identi®ed as a novel orally active and highly selective cyclo-oxygenase-2 (COX-2) inhibitor. 2 In CHO cells stably transfected with human COX isozymes, DFU inhibited the arachidonic aciddependent production of prostaglandin E 2 (PGE 2 ) with at least a 1,000 fold selectivity for COX-2 (IC 50 =41+14 nM) over COX-1 (IC 50 450 mM). Indomethacin was a potent inhibitor of both COX-1 (IC 50 =18+3 nM) and COX-2 (IC 50 =26+6 nM) under the same assay conditions. The large increase in selectivity of DFU over indomethacin was also observed in COX-1 mediated production of thromboxane B 2 (TXB 2 ) by Ca 2+ ionophore-challenged human platelets (IC 50 450 mM and 4.1+1.7 nM, respectively). 3 DFU caused a time-dependent inhibition of puri®ed recombinant human COX-2 with a K i value of 140+68 mM for the initial reversible binding to enzyme and a k 2 value of 0.11+0.06 s 71 for the ®rst order rate constant for formation of a tightly bound enzyme-inhibitor complex. Comparable values of 62+26 mM and 0.06+0.01 s 71 , respectively, were obtained for indomethacin. The enzyme-inhibitor complex was found to have a 1 : 1 stoichiometry and to dissociate only very slowly (t 1/2 =1 ± 3 h) with recovery of intact inhibitor and active enzyme. The time-dependent inhibition by DFU was decreased by co-incubation with arachidonic acid under non-turnover conditions, consistent with reversible competitive inhibition at the COX active site. 4 Inhibition of puri®ed recombinant human COX-1 by DFU was very weak and observed only at low concentrations of substrate (IC 50 =63+5 mM at 0.1 mM arachidonic acid). In contrast to COX-2, inhibition was time-independent and rapidly reversible. These data are consistent with a reversible competitive inhibition of COX-1. 5 DFU inhibited lipopolysaccharide (LPS)-induced PGE 2 production (COX-2) in a human whole blood assay with a potency (IC 50 =0.28+0.04 mM) similar to indomethacin (IC 50 =0.68+0.17 mM). In contrast, DFU was at least 500 times less potent (IC 50 497 mM) than indomethacin at inhibiting coagulationinduced TXB 2 production (COX-1) (IC 50 =0.19+0.02 mM). 6 In a sensitive assay with U937 cell microsomes at a low arachidonic acid concentration (0.1 mM), DFU inhibited COX-1 with an IC 50 value of 13+2 mM as compared to 20+1 nM for indomethacin. CGP 28238, etodolac and SC-58125 were about 10 times more potent inhibitors of COX-1 than DFU. The order of potency of various inhibitors was diclofenac4indomethacin*naproxen4nimesulide* meloxicam*piroxicam4NS-398*SC-576664SC-581254CGP 28238*etodolac4L-745,3374DFU. 7 DFU inhibited dose-dependently both the carrageenan-induced rat paw oedema (ED 50 of 1.1 mg kg 71 vs 2.0 mg kg 71 for indomethacin) and hyperalgesia (ED 50 of 0.95 mg kg 71 vs 1.5 mg kg 71 for indomethacin). The compound was also e ective at reversing LPS-induced pyrexia in rats (ED 50 =0.76 mg kg 71 vs 1.1 mg kg 71 for indomethacin). 8 In a sensitive model in which 51 Cr faecal excretion was used to assess the integrity of the gastrointestinal tract in rats, no signi®cant e ect was detected after oral...
OBJECTIVESignificant new data suggest that metabolic disorders such as diabetes, obesity, and atherosclerosis all posses an important inflammatory component. Infiltrating macrophages contribute to both tissue-specific and systemic inflammation, which promotes insulin resistance. The complement cascade is involved in the inflammatory cascade initiated by the innate and adaptive immune response. A mouse genomic F2 cross biology was performed and identified several causal genes linked to type 2 diabetes, including the complement pathway.RESEARCH DESIGN AND METHODSWe therefore sought to investigate the effect of a C3a receptor (C3aR) deletion on insulin resistance, obesity, and macrophage function utilizing both the normal-diet (ND) and a diet-induced obesity mouse model.RESULTSWe demonstrate that high C3aR expression is found in white adipose tissue and increases upon high-fat diet (HFD) feeding. Both adipocytes and macrophages within the white adipose tissue express significant amounts of C3aR. C3aR−/− mice on HFD are transiently resistant to diet-induced obesity during an 8-week period. Metabolic profiling suggests that they are also protected from HFD-induced insulin resistance and liver steatosis. C3aR−/− mice had improved insulin sensitivity on both ND and HFD as seen by an insulin tolerance test and an oral glucose tolerance test. Adipose tissue analysis revealed a striking decrease in macrophage infiltration with a concomitant reduction in both tissue and plasma proinflammatory cytokine production. Furthermore, C3aR−/− macrophages polarized to the M1 phenotype showed a considerable decrease in proinflammatory mediators.CONCLUSIONSOverall, our results suggest that the C3aR in macrophages, and potentially adipocytes, plays an important role in adipose tissue homeostasis and insulin resistance.
1 We characterized the regulation of cyclooxygenase-2 (COX-2) at the mRNA, protein and mediator level in two rat models of acute in¯ammation, carrageenan-induced paw údema and mechanical hyperalgesia. 2 Carrageenan was injected in the hind paw of rat at low (paw údema) and high doses (hyperalgesia). COX-2 and prostaglandin E 2 (PGE 2 ) levels were measured by RT ± PCR and immunological assays. We also determined the distribution of COX-2 by immunohistochemistry. 3 The injection of carrageenan produced a signi®cant and parallel induction of both COX-2 and PGE 2 . This induction was signi®cantly higher in hyperalgesia than in paw údema. This was probably due to the 9 fold higher concentration of carrageenan used to provoke hyperalgesia. 4 Immunohistochemical examination showed COX-2 immunoreactivity in the epidermis, skeletal muscle and in¯ammatory cells of rats experiencing hyperalgesia. In paw údema however, only the epidermis showed positive COX-2 immunoreactivity. 5 Pretreatment with indomethacin completely abolished the induction of COX-2 in paw údema but not in hyperalgesia. 6 These results suggest that multiple mechanisms regulate COX-2 induction especially in the more severe model. In carrageenan-induced paw údema, prostanoid production have been linked through the expression of the COX-2 gene which suggest the presence of a positive feedback loop mechanism.
L-663,536 (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2, 2-dimethylpropanoic acid) is a potent inhibitor of leukotriene (LT) biosynthesis in intact human polymorphonuclear leukocytes (PMN) (IC50, 2.5 nM). Similarly, L-663,536 inhibited A23187-induced LTB4 formation by rat peripheral blood and elicited PMN. At concentrations where inhibition of leukotriene biosynthesis occurred in human whole blood (1.1 microM), no effect was seen on cyclooxygenase or 12-lipoxygenase, an effect also observed in washed human platelets. The compound had no effect on rat or porcine 5-lipoxygenase indicating that L-663,536 is not a direct 5-lipoxygenase inhibitor. When administered in vivo L-663,536 was a potent inhibitor of antigen-induced dyspnea in inbred rats pretreated with methysergide (ED50, 0.036 mg/kg p.o.) and of Ascaris-induced bronchoconstriction in squirrel monkeys (1 mg/kg p.o.). The compound inhibited leukotriene biosynthesis in vivo in a rat pleurisy model (ED50, 0.2 mg/kg p.o.), an inflamed rat paw model (ED50, 0.8 mg/kg), a model of leukotriene excretion in rat bile following antigen provocation, and a model in the guinea-pig ear where leukotriene synthesis was induced by topical challenge with ionophore A23187 (ED50, 2.5 mg/kg p.o. and 0.6 micrograms topically). The results indicate that L-663,536 is a potent inhibitor of leukotriene biosynthesis both in vitro and in vivo indicating that the compound is suitable for studying the role of leukotrienes in a variety of pathological situations.
The potential use of SCD inhibitors for the chronic treatment of diabetes and dyslipidemia has been limited by preclinical adverse events associated with inhibition of SCD in skin and eye tissues. To establish a therapeutic window, we embarked on designing liver-targeted SCD inhibitors by utilizing molecular recognition by liver-specific organic anion transporting polypeptides (OATPs). In doing so, we set out to target the SCD inhibitor to the organ believed to be responsible for the therapeutic efficacy (liver) while minimizing its exposure in the tissues associated with mechanism-based SCD depletion of essential lubricating lipids (skin and eye). These efforts led to the discovery of MK-8245 (7), a potent, liver-targeted SCD inhibitor with preclinical antidiabetic and antidyslipidemic efficacy with a significantly improved therapeutic window.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.