The large number of S. aureus antigen-reactive memory T-lymphocytes is likely to influence the course of S. aureus infection. To enable rational vaccine design, the naturally acquired human T-cell memory needs to be explored at high priority.
h Population-based studies on Staphylococcus aureus nasal colonization are scarce. We examined the prevalence, resistance, and molecular diversity of S. aureus in the general population in Northeast Germany. Nasal swabs were obtained from 3,891 adults in the large-scale population-based Study of Health in Pomerania (SHIP-TREND). Isolates were characterized using spa genotyping, as well as antibiotic resistance and virulence gene profiling. We observed an S. aureus prevalence of 27.2%. Nasal S. aureus carriage was associated with male sex and inversely correlated with age. Methicillin-resistant S. aureus (MRSA) accounted for 0.95% of the colonizing S. aureus strains. MRSA carriage was associated with frequent visits to hospitals, nursing homes, or retirement homes within the previous 24 months. All MRSA strains were resistant to multiple antibiotics. Most MRSA isolates belonged to the pandemic European hospital-acquired MRSA sequence type 22 (HA-MRSA-ST22) lineage. We also detected one livestock-associated MRSA ST398 (LA-MRSA-ST398) isolate, as well as six livestock-associated methicillin-susceptible S. aureus (LA-MSSA) isolates (clonal complex 1 [CC1], CC97, and CC398). spa typing revealed a diverse but also highly clonal S. aureus population structure. We identified a total of 357 spa types, which were grouped into 30 CCs or sequence types. The major seven CCs (CC30, CC45, CC15, CC8, CC7, CC22, and CC25) included 75% of all isolates. Virulence gene patterns were strongly linked to the clonal background. In conclusion, MSSA and MRSA prevalences and the molecular diversity of S. aureus in Northeast Germany are consistent with those of other European countries. The detection of HA-MRSA and LA-MRSA within the general population indicates possible transmission from hospitals and livestock, respectively, and should be closely monitored.
Staphylococcus aureus is one of the major causative agents of severe infections, and is responsible for a high burden of morbidity and mortality. Strains of increased virulence have emerged (e.g. USA300) that can infect healthy individuals in the community and are difficult to treat. To add to the knowledge about the pathophysiology of S. aureus, the adaption to iron restriction, an important in vivo stressor, was studied and the corresponding immune response of the human host characterized. Using a combination of 1D and 2D immune proteomics, the human antibody response to the exoproteomes of S. aureus USA300Δspa grown under iron restriction or with excess iron was compared. Human antibody binding to the altered exoproteome under iron restriction showed a 2.7- to 6.2-fold increase in overall signal intensity, and new antibody specificities appeared. Quantification of the secreted bacterial proteins by gel-free proteomics showed the expected strong increase in level of proteins involved in iron acquisition during iron-restricted growth compared to iron access. This was accompanied by decreased levels of superantigens and hemolysins. The latter was corroborated by functional peripheral blood mononuclear cell proliferation assays. The present data provide a comprehensive view of S. aureus exoproteome adaptation to iron restriction. Adults have high concentrations of serum antibodies specific for some of the newly induced proteins. We conclude that iron restriction is a common feature of the microenvironment, where S. aureus interacts with the immune system of its human host.
Staphylococcus aureus is a frequent commensal but also a dangerous pathogen, causing many forms of infection ranging from mild to life‐threatening conditions. Among its virulence factors are lipoproteins, which are anchored in the bacterial cell membrane. Lipoproteins perform various functions in colonization, immune evasion, and immunomodulation. These proteins are potent activators of innate immune receptors termed Toll‐like receptors 2 and 6. This study addressed the specific B‐cell and T‐cell responses directed to lipoproteins in human S. aureus carriers and non‐carriers. 2D immune proteomics and ELISA approaches revealed that titers of antibodies (IgG) binding to S. aureus lipoproteins were very low. Proliferation assays and cytokine profiling data showed only subtle responses of T cells; some lipoproteins did not elicit proliferation. Hence, the robust activation of the innate immune system by S. aureus lipoproteins does not translate into a strong adaptive immune response. Reasons for this may include inaccessibility of lipoproteins for B cells as well as ineffective processing and presentation of the antigens to T cells.
AbstractsBackgroundThe lipase subfamilies I.1 and I.2 show more than 33% homology in the amino acid sequences and most members share another common property that their genes are clustered with the secondary genes whose protein products are required for folding the lipase into an active conformation and secretion into the culture medium. In previous studies, the lipase (LipA) and its chaperone (LipB) from Ralstonia sp. M1 were overexpressed in E. coli and the lipase was successfully refolded in vitro. The purpose of this study was to enhance the production of the active lipase LipA from Ralstonia sp. M1 in the heterologous host E. coli without in vitro refolding process, using two-plasmid co-expression systems and dual expression cassette plasmid systems.ResultsTo produce more active lipase from Ralstonia sp. M1 in E. coli without in vitro refolding process but with the help of overexpression of the chaperone (LipB1 and LipB3 corresponding to 56-aa truncated and 26-aa truncated chaperone LipB), six different expression systems including 2 two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) and 4 dual expression cassette plasmid systems (BL21/pELipAB-LipB1a, BL21/pELipAB-LipB3a, BL21/pELipA-LipB1a, and BL21/pELipA-LipB3a) were constructed. The two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) produced the active lipase at a level of 4 times as high as the single expression cassette plasmid system E. coli BL21/pELipABa did. For the first time, the dual expression cassette plasmid systems BL21/pELipAB-LipB1a and BL21/pELipAB-LipB3a yielded 29- and 19-fold production of the active lipase in comparison with the single expression cassette plasmid system E. coli BL21/pELipABa, respectively. Although the lipase amount was equally expressed in all these expression systems (40% of total cellular protein) and only a small fraction of the overexpressed lipase was folded in vivo into the functional lipase in soluble form whereas the main fraction was still inactive in the form of inclusion bodies. Another controversial finding was that the dual expression cassette plasmid systems E. coli BL21/pELipAB-LipB1a and E. coli/pELipAB-LipB3a secreted the active lipase into the culture medium of 51 and 29 times as high as the single expression cassette plasmid system E. coli pELipABa did, respectively, which has never been reported before. Another interesting finding was that the lipase form LipA6xHis (mature lipase fused with 6× histidine tag) expressed in the dual expression cassette plasmid systems (BL21/pELipA-LipB1a and BL21/pELipA-LipB3a) showed no lipase activity although the expression level of the lipase and two chaperone forms LipB1 and LipB3 in these systems remained as high as that in E. coli BL21/pELipABa + pELipB1k, BL21/pELipABa + pELipB3k, BL21/pELipAB-LipB1a, and BL21/pELipAB-LipB3a. The addition of Neptune oil or detergents into the LB medium increased the lipase production and secretion by up to 94%.ConclusionsOur findings d...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.