Genome Biology 2011, 12(Suppl 1):I18 Deep exome resequencing is a powerful approach for delineating patterns of protein-coding variation among genes, pathways, individuals and populations. We analyzed exome data from 2,440 individuals of European and African ancestry as part of the National Heart, Lung, and Blood Institute's Exome Project, the aim of which is to discover novel genes and mechanisms that contribute to heart, lung and blood disorders. Each exome was sequenced to a mean coverage of 116×, allowing detailed inferences about the population genomic patterns of both common variation and rare coding variation. We identifi ed more than 500,000 single nucleotide variations, the majority of which were novel and rare (76% of variants had a minor allele frequency of less than 0.1%), refl ecting the recent dramatic increase in the size of the human population. The unprecedented magnitude of this dataset allowed us to rigorously characterize the large variation in nucleotide diversity among genes (ranging from 0 to 1.32%), as well as the role of positive and purifying selection in shaping patterns of protein-coding variation and the diff erential signatures of population structure from rare and common variation. This dataset provides a framework for personal genomics and is an important resource that will allow inferences of broad importance to human evolution and health. I2 Abstract not submitted for online publication. I3 Are clinical genomes already becoming semi-routine for patient care?
The New Delhi metallo-β-lactamase (NDM-1) is one of the most important resistance traits in Enterobacteriaceae. We characterized nine blaNDM-1 producing Enterobacteriaceae recovered from seven patients who have recently travelled or been treated in India (n=1) or mainland China (n=6) during December 2010–May 2012. All the China-linked patients had no links to the Indian subcontinent. The blaNDM-1 carrying plasmids belonged to the novel IncX3 (∼50 kb, in seven isolates including two Escherichia coli, two Klebsiella pneumoniae, one Citrobacter freundii, one Enterobacter aerogenes and one E. cloacae), IncA/C2 (∼140 kb, in one E. coli) or FII-F1B groups (∼110 kb, in one E. coli). Restriction fragment length polymorphism analysis of the seven IncX3 plasmids revealed identical pattern in six and two bands difference in the remaining one. The IncX3 plasmids carrying blaNDM-1 were epidemiologically linked to Guangzhou (n=1), Hunan (n=4), Haifeng (n=1) and Dongguan (n=1) in mainland China. Complete sequencing of the IncX3 plasmid pNDM-HN380 revealed that it was 54 035 bp long and encoded 52 open reading frames. The blaNDM-1 gene was found in a transposon-like structure flanked by ISAba125 and IS26, inserted into the plasmid genetic load region. The sequences of the blaNDM-1 containing module within the two IS elements were identical to those previously described for blaNDM-1-positive Tn125 in the plasmids or chromosome of Acinetobacter isolates. In summary, this is the first description of IncX3 plasmids carrying blaNDM-1. The findings indicate the worrisome involvement of an epidemic plasmid in the dissemination of NDM-1 in China.
Whether certain Epstein-Barr virus (EBV) strains are associated with pathogenesis of nasopharyngeal carcinoma (NPC) is still an unresolved question. In the present study, EBV genome contained in a primary NPC tumor biopsy was amplified by Polymerase Chain Reaction (PCR), and sequenced using next-generation (Illumina) and conventional dideoxy-DNA sequencing. The EBV genome, designated HKNPC1 (Genbank accession number JQ009376) is a type 1 EBV of approximately 171.5 kb. The virus appears to be a uniform strain in line with accepted monoclonal nature of EBV in NPC but is heterogeneous at 172 nucleotide positions. Phylogenetic analysis with the four published EBV strains, B95-8, AG876, GD1, and GD2, indicated HKNPC1 was more closely related to the Chinese NPC patient-derived strains, GD1 and GD2. HKNPC1 contains 1,589 single nucleotide variations (SNVs) and 132 insertions or deletions (indels) in comparison to the reference EBV sequence (accession number NC007605). When compared to AG876, a strain derived from Ghanaian Burkitt's lymphoma, we found 322 SNVs, of which 76 were non-synonymous SNVs and were shared amongst the Chinese GD1, GD2 and HKNPC1 isolates. We observed 88 non-synonymous SNVs shared only by HKNPC1 and GD2, the only other NPC tumor-derived strain reported thus far. Non-synonymous SNVs were mainly found in the latent, tegument and glycoprotein genes. The same point mutations were found in glycoprotein (BLLF1 and BALF4) genes of GD1, GD2 and HKNPC1 strains and might affect cell type specific binding. Variations in LMP1 and EBNA3B epitopes and mutations in Cp (11404 C>T) and Qp (50134 G>C) found in GD1, GD2 and HKNPC1 could potentially affect CD8+ T cell recognition and latent gene expression pattern in NPC, respectively. In conclusion, we showed that whole genome sequencing of EBV in NPC may facilitate discovery of previously unknown variations of pathogenic significance.
The IncX family of plasmids has recently been expanded to include at least four subtypes, IncX1-IncX4. The revised classification provides an opportunity for improving our understanding of the sequence diversity of the IncX plasmids and the resistance genes they carried. We described the complete nucleotide sequence of a novel IncX3 plasmid, pKPC-NY79 (42,447 bp) from a sequence-type 258 Klebsiella pneumoniae strain that was isolated from a patient who was hospitalized in New York, United States. In pKPC-NY79, the plasmid scaffold and genetic load region were highly similar to homologous regions in pIncX-SHV (IncX3, JN247852) and the bla KPC carrying pKpQIL (IncFIIk, GU595196), respectively, indicating that it has possibly arisen through recombination of plasmids. The bla KPC-2 gene, as part of a transposon Tn4401a, was found within the genetic load region. The backbone of pKPC-NY79 differs from pIncX-SHV by a deletion involving the gene tandem hns-topB (encoding H-NS protein and topoisomerase III, respectively) and a putative ATPase gene. Unexpectedly, the impact of the hns-topB deletion on host fitness and plasmid stability was found to be small. In conclusion, the findings contribute to a better understanding of the plasmid platforms carrying bla KPC and of variations in the backbone of the IncX3 plasmids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.