Gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) play critical roles in vertebrate reproduction. In the present study, we cloned and characterized zebrafish FSHbeta (fshb), LHbeta (lhb), and GTHalpha (cga) subunits. Compared with the molecules of other teleosts, the cysteine residues and potential glycosylation sites are fully conserved in zebrafish Lhb and Cga but not in Fshb, whose cysteines exhibit unique distribution. Interestingly, in addition to the pituitary, fshbeta, lhbeta, and cga were also expressed in some extrapituitary tissues, particularly the gonads and brain. In situ hybridization showed that zebrafish fshbeta and lhbeta were expressed in two distinct populations of gonadotrophs in the pituitary. Real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that all the three subunits increased expression before ovulation (0100-0400) when the germinal vesicles in the full-grown follicles were migrating toward the periphery, but the levels dropped at 0700, when ovulation occurred. Recombinant zebrafish FSH (zfFSH) and LH (zfLH) were produced in the Chinese hamster ovary (CHO) cells and their effects on the cognate receptors (zebrafish Fshr and Lhr) tested. Interestingly, zfFSH specifically activated zebrafish Fshr expressed together with a cAMP-responsive reporter gene in the CHO cells, whereas zfLH could stimulate both Fshr and Lhr. In conclusion, the present study systematically investigated gonadotropins in the zebrafish in terms of their structure, spatial-temporal expression patterns, and receptor specificity. These results, together with the availability of recombinant zfFSH and zfLH, provide a solid foundation for further studies on the physiological relevance of FSH and LH in the zebrafish, one of the top biological models in vertebrates.
In the present study, we cloned and characterized zebrafish FSH receptor (Fshr) and LH receptor (Lhr). Both fshr and lhr were abundantly expressed in the zebrafish gonads; however, they could also be detected in the kidney and liver, respectively. When overexpressed in mammalian cell lines together with a cAMP-responsive reporter gene, zebrafish Fshr responded to goldfish pituitary extract but not hCG, whereas Lhr could be activated by both. It was further demonstrated that Fshr was specific to bFSH, while Lhr could be stimulated by both bovine FSH and LH. Low level of fshr expression could be detected in the immature ovary, but the level steadily increased during vitellogenesis of the first cohort of developing follicles. In contrast, the expression of lhr could barely be detected in the immature ovary, but it became detectable at the beginning of vitellogenesis and steadily increased afterward with the peak level reached at the full-grown stage. At the follicle level, the expression of fshr was very weak in the follicles of primary growth stage but significantly increased with the follicles entering vitellogenesis. However, after reaching the maximal level in the midvitellogenic follicles, the level of fshr expression dropped slightly but significantly at the full-grown stage. In comparison, the expression of lhr obviously lagged behind that of fshr. Its expression became detectable only when the follicles started to accumulate yolk granules, but the level rose steadily afterward and reached the peak at the full-grown stage before oocyte maturation. These results suggest differential roles for Fshr and Lhr in zebrafish ovarian follicle development.
Whether certain Epstein-Barr virus (EBV) strains are associated with pathogenesis of nasopharyngeal carcinoma (NPC) is still an unresolved question. In the present study, EBV genome contained in a primary NPC tumor biopsy was amplified by Polymerase Chain Reaction (PCR), and sequenced using next-generation (Illumina) and conventional dideoxy-DNA sequencing. The EBV genome, designated HKNPC1 (Genbank accession number JQ009376) is a type 1 EBV of approximately 171.5 kb. The virus appears to be a uniform strain in line with accepted monoclonal nature of EBV in NPC but is heterogeneous at 172 nucleotide positions. Phylogenetic analysis with the four published EBV strains, B95-8, AG876, GD1, and GD2, indicated HKNPC1 was more closely related to the Chinese NPC patient-derived strains, GD1 and GD2. HKNPC1 contains 1,589 single nucleotide variations (SNVs) and 132 insertions or deletions (indels) in comparison to the reference EBV sequence (accession number NC007605). When compared to AG876, a strain derived from Ghanaian Burkitt's lymphoma, we found 322 SNVs, of which 76 were non-synonymous SNVs and were shared amongst the Chinese GD1, GD2 and HKNPC1 isolates. We observed 88 non-synonymous SNVs shared only by HKNPC1 and GD2, the only other NPC tumor-derived strain reported thus far. Non-synonymous SNVs were mainly found in the latent, tegument and glycoprotein genes. The same point mutations were found in glycoprotein (BLLF1 and BALF4) genes of GD1, GD2 and HKNPC1 strains and might affect cell type specific binding. Variations in LMP1 and EBNA3B epitopes and mutations in Cp (11404 C>T) and Qp (50134 G>C) found in GD1, GD2 and HKNPC1 could potentially affect CD8+ T cell recognition and latent gene expression pattern in NPC, respectively. In conclusion, we showed that whole genome sequencing of EBV in NPC may facilitate discovery of previously unknown variations of pathogenic significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.