With both spin and valley degrees of freedom, the low-lying excitonic spectra of photo-excited transition-metal dichalcogenide monolayers (TMDC-MLs) are featured by rich fine structures, comprising the intra-valley bright exciton states as well as various intra-and inter-valley dark ones. The latter states can be classified as those of the spin-and momentum-forbidden dark excitons according to the violated optical selection rules. Because of their optical invisibility, these two types of the dark states are in principle hardly observed and even distinguished in conventional spectroscopies although their impacts on the optical and dynamical properties of TMDC-MLs have 1 arXiv:1811.06728v3 [cond-mat.mes-hall] 9 Apr 2019 been well noticed. In this Letter, we present a theoretical and computational investigation of the exciton fine structures and the temperature-dependent photo-luminescence spectra of strained tungsten diselenide monolayers (WSe 2 -MLs) where the intra-valley spin-forbidden dark exciton lies in the lowest exciton states and other momentumforbidden states are in the higher energies that are tunable by external stress. The numerical computations are carried out by solving the Bethe-Salpeter equation for an exciton in a WSe 2 -ML under the stress-control in the tight-binding scheme established from the first principle computation in the density functional theory. According to the numerical computation and supportive model analysis, we reveal the distinctive signatures of the spin-and momentum-forbidden exciton states of strained WSe 2 -MLs in the temperature-dependent photo-luminescences and present the guiding principle to infer the relative energetic locations of the two types of dark excitons.
Tuning the Fermi level (EF) in Bi2Te3 topological-insulator (TI) films is demonstrated on controlling the temperature of growth with molecular-beam epitaxy (MBE).
The structural and electronic properties of a hybrid of an armchair graphene nanotube and a zigzag graphene nanoribbon are investigated by first-principles spin-polarized calculations. These properties strongly depend either on the nanotube location or on the spin orientation. The interlayer spacing, the transverse distance from the center of the ribbon and the stacking configuration affect the electronic structures. The antiferromagnetic configuration has a lower total energy than the ferromagnetic one. The interlayer atomic interactions between the two subsystems would change the low energy dispersions, open subband spacings, and induce more band-edge states. Moreover, such interactions create an energy gap and break the spin degeneracy in the antiferromagnetic configuration. The band-edge-state energies are sensitive to the nanotube location.
Armchair WS2 nanoribbons are semiconductors with band gaps close to 0.5 eV. If some of the W atoms in the ribbon are replaced by transition metals, the impurity states can tremendously affect the overall electronic structure of the doped ribbon. By using first-principles calculations based on density functional theory, we investigated substitutional doping of Ti, V, Cr, Mn, Fe, and Co at various positions on WS2 ribbons of different widths. We found that Fe-doped ribbons can have two-channel conduction in the middle segment of the ribbon and at the edges, carrying opposite spins separately. Many Co-doped ribbons are transformed into spin filters that exhibit 100% spin-polarized conduction. These results will be useful for spintronics and nanoelectronic circuit design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.