Many neurodegenerative diseases are characterized by the accumulation of abnormal protein aggregates in the brain. In Parkinson’s disease (PD), α-synuclein (α-syn) forms such aggregates called Lewy bodies (LBs). Recently, it has been reported that aggregates of α-syn with a cross-β structure are capable of propagating within the brain in a prionlike manner. However, the presence of cross-β sheet-rich aggregates in LBs has not been experimentally demonstrated so far. Here, we examined LBs in thin sections of autopsy brains of patients with PD using microbeam X-ray diffraction (XRD) and found that some of them gave a diffraction pattern typical of a cross-β structure. This result confirms that LBs in the brain of PD patients contain amyloid fibrils with a cross-β structure and supports the validity of in vitro propagation experiments using artificially formed amyloid fibrils of α-syn. Notably, our finding supports the concept that PD is a type of amyloidosis, a disease featuring the accumulation of amyloid fibrils of α-syn.
Mitochondrial quality control, which is crucial for maintaining cellular homeostasis, has been considered to be achieved exclusively through mitophagy. Here we report an alternative mitochondrial quality control pathway mediated by extracellular mitochondria release. By performing time-lapse confocal imaging on a stable cell line with fluorescent-labeled mitochondria, we observed release of mitochondria from cells into the extracellular space. Correlative light-electron microscopy revealed that majority of the extracellular mitochondria are in free form and, on rare occasions, some are enclosed in membrane-surrounded vesicles. Rotenone-and carbonyl cyanide m-chlorophenylhydrazone-induced mitochondrial quality impairment promotes the extracellular release of depolarized mitochondria. Overexpression of PRKN (parkin RBR E3 ubiquitin protein ligase), which has a pivotal role in mitophagy regulation, suppresses the extracellular mitochondria release under basal and stress condition, whereas its knockdown exacerbates it. Correspondingly, overexpression of PRKNindependent mitophagy regulators, BNIP3 (BCL2 interacting protein 3) and BNIP3L/NIX (BCL2 interacting protein 3 like), suppress extracellular mitochondria release. Autophagy-deficient cell lines show elevated extracellular mitochondria release. These results imply that perturbation of mitophagy pathway prompts mitochondria expulsion. Presence of mitochondrial protein can also be detected in mouse sera. Sera of PRKN-deficient mice contain higher level of mitochondrial protein compared to that of wild-type mice. More importantly, fibroblasts and cerebrospinal fluid samples from Parkinson disease patients carrying loss-of-function PRKN mutations show increased extracellular mitochondria compared to control subjects, providing evidence in a clinical context. Taken together, our findings suggest that extracellular mitochondria release is a comparable yet distinct quality control pathway from conventional mitophagy.
Lewy bodies (LBs), which mainly consist of α-synuclein (α-syn), are neuropathological hallmarks of patients with Parkinson’s disease (PD). The fine structure of LBs is unknown, and LBs cannot be made artificially. Nevertheless, many studies have described fibrillisation using recombinant α-syn purified from E. coli. An extremely fundamental problem is whether the structure of LBs is the same as that of recombinant amyloid fibrils. Thus, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to analyse the fine structure of LBs in the brain of PD patients. Our results showed a shift in the infrared spectrum that indicates abundance of a β-sheet-rich structure in LBs. Also, 2D infrared mapping of LBs revealed that the content of the β-sheet structure is higher in the halo than in the core, and the core contains a large amount of proteins and lipids.
Parkinson’s disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. A characteristic pathological feature of PD is cytoplasmic accumulation of α-synuclein (SNCA) protein. Multiplication of the SNCA gene in familial PD and pathological accumulation of SNCA protein during progression of sporadic PD suggest that increased SNCA protein levels increase the risk of PD. Thus, reducing SNCA expression levels could delay PD onset or modify the disease course. For efficient knock down, we designed and synthesized an amido-bridged nucleic acids (AmNA)-modified antisense oligonucleotide (ASO) that targeted SNCA with improved stability and cellular uptake in vivo . AmNA-ASO efficiently downregulated SNCA at both the mRNA and protein level in vitro and in vivo . Notably, AmNA-ASO was efficiently delivered into the mouse brain by intracerebroventricular injection without the aid of additional chemicals. Furthermore, administration of AmNA-ASO ameliorated neurological defects in PD model mice expressing human wild type SNCA. Taken together, these findings suggest that AmNA-ASO is a promising therapeutic strategy for SNCA-associated pathology in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.