The zero‐dimensional metallic nanoparticles (NPs) have attracted tremendous attention in various areas owing to the collective oscillation of electron gas that couples with electromagnetic field, known as localized surface plasmon resonance (LSPR). In practical applications, the tailoring of LSPR effect is of significant importance for promising photonic devices with designed nanocomposite systems and enhanced optical properties. Ion beam technology has been demonstrated to be an efficient method to fabricate NPs embedded in dielectrics for LSPR tailoring and material modification. By manipulating the parameters of ion beams, the shape, size, and structure of NPs can be well controlled, which enables the dielectrics to possess novel linear and nonlinear optical properties. In this review, the latest research progress on the ion beam synthesis of various NPs is systematically summarized. The tailoring of linear and nonlinear optical properties of dielectrics by NPs is discussed in detail. Selected applications are presented to indicate the development of the plasmonic NPs in dielectric systems for photonic applications.
Plasmonic Au nanoparticles embedded in LiNbO3 crystals as efficient saturable absorbers to realize 74.1 ps mode‐locked laser pulse generation at 1 µm are reported. The system is fabricated by Au ion implantation and subsequent annealing, a well‐developed chip technology. The strong optical absorption band peaking at 640 nm is observed due to the localized surface plasmon resonance. Z‐scan investigation shows that the LiNbO3 crystals with embedded Au nanoparticles possess ultrafast saturable absorption properties at near‐infrared 1 µm wavelength. With this feature the Au nanoparticles embedded LiNbO3 wafer is applied as saturable absorber into a laser‐written Nd:YVO4 waveguide platform. Stable laser pulses at 1064 nm based on an efficient passive Q‐switched mode‐locking process, reaching a fundamental repetition rate of 6.4 GHz and a pulse duration of 74.1 ps, are obtained. Since LiNbO3 has broadband applications in various optical systems, this work opens the way to develop intriguing devices in LiNbO3‐based photonic circuits by using embedded metallic nanoparticles.
Monolithic waveguide laser devices are required to achieve on-chip lasing. In this work, a new design of a monolithic device with embedded Ag nanoparticles (NPs) plus the Nd:YAG ridge waveguide has been proposed and implemented. By using Ag+ ion implantation, the embedded Ag NPs are synthesized on the near-surface region of the Nd:YAG crystal, resulting in the significant enhancement of the optical nonlinearity of Nd:YAG and offering saturable absorption properties of the crystal at a wide wavelength band. The subsequent processing of the O5+ ion implantation and diamond saw dicing of crystal finally leads to the fabrication of monolithic waveguide with embedded Ag NPs. Under an optical pump, the Q-switched mode-locked waveguide lasers operating at 1 μm is realized with the pulse duration of 29.5 ps and fundamental repetition rate of 10.53 GHz, owing to the modulation of Ag NPs through evanescent field interaction with waveguide modes. This work introduces a new approach in the application of monolithic ultrafast laser devices by using embedded metallic NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.