Acne vulgaris is the most common skin disorder, and is caused by Propionibacterium acnes (P. acnes) and can induce inflammation. Antibiotic therapy often needs to be administered for long durations in acne therapy, which results in extensive antibiotic exposure. The present study investigated a new treatment model for evaluating the antibacterial effects of lysozyme (LY)-shelled microbubbles (MBs) and ultrasound (US)-mediated LY-shelled MBs cavitation against P. acnes both in vitro and in vivo, with the aims of reducing the dose and treatment duration and improving the prognosis of acne vulgaris. In terms of the in vitro treatment efficacy, the growth of P. acnes was inhibited by 86.08 ± 2.99% in the LY-shelled MBs group and by 57.74 ± 3.09% in the LY solution group. For US power densities of 1, 2, and 3 W/cm2 in the LY-shelled MBs group, the growth of P. acnes was inhibited by 95.79 ± 3.30%, 97.99 ± 1.16%, and 98.69 ± 1.13%, respectively. The in vivo results showed that the recovery rate on day 13 was higher in the US group with LY-shelled MBs (97.8 ± 19.8%) than in the LY-shelled MBs group (90.3 ± 23.3%). Our results show that combined treatments of US and LY-shelled MBs can significantly reduce the treatment duration and inhibit P.-acnes-induced inflammatory skin diseases.
The feasibility of ultrasound (US) controlled cavitation for transdermal drug delivery (TDD) using gas-filled microbubbles (MBs) has been explored. However, liquid or gel-type MBs is not easy used for TDD. The present study investigated a new treatment model for evaluating the US-mediated liquid-type epidermal growth factor (EGF)-coated lysozyme microbubble (LYMB) cavitation in a wound dressing for enhancing wound healing. The maximum loading efficacy of EGF onto LYMBs was 19.40 ± 0.04%. In terms of the in vitro treatment efficacy, the growth of Staphylococcus aureus was inhibited by 97.50 ± 1.50% in the group with LYMBs exposed to 3 W/cm2 US. During 21 days in vivo wound healing experiments, the recovery rate during the first 6 days was significant higher in the group with EGF-LYMB dressings and US exposure (day 6: 54.28 ± 3.26%) than in the control group (day 6: 26.36 ± 3.34%) (p < 0.05). Our results show that the new model can significantly reduce the treatment duration during wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.