This paper tackles a privacy breach in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. For example, a user who wants to issue a query asking about her nearest gas station has to report her exact location to an LBS provider. However, many recent research efforts have indicated that revealing private location information to potentially untrusted LBS providers may lead to major privacy breaches. To preserve user location privacy, spatial cloaking is the most commonly used privacy-enhancing technique in LBS. The basic idea of the spatial cloaking technique is to blur a user's exact location into a cloaked area that satisfies the user specified privacy requirements. Unfortunately, existing spatial cloaking algorithms designed for LBS rely on fixed communication infrastructure, e.g., base stations, and centralized/distributed servers. Thus, these algorithms cannot be applied to a mobile peer-to-peer (P2P) environment where mobile users can only communicate with other peers through P2P multi-hop routing without any support of fixed communication infrastructure or servers. In this paper, we propose a spatial cloaking algorithm for mobile P2P environments. As mobile P2P environments have many unique limitations, e.g., user mobility, limited transmission range, multi-hop communication, scarce commu- nication resources, and network partitions, we propose three key features to enhance our algorithm: (1) An information sharing scheme enables mobile users to share their gathered peer location information to reduce communication overhead; (2) A historical location scheme allows mobile users to utilize stale peer location information to overcome the network partition problem; and (3) A cloaked area adjustment scheme guarantees that our spatial cloaking algorithm is free from a "center-of-cloaked-area" privacy attack. Experimental results show that our P2P spatial cloaking algorithm is scalable while guaranteeing the user's location privacy protection.
Abstract-In applications like location-based services, sensor monitoring and biological databases, the values of the database items are inherently uncertain in nature. An important query for uncertain objects is the Probabilistic Nearest-Neighbor Query (PNN), which computes the probability of each object for being the nearest neighbor of a query point. Evaluating this query is computationally expensive, since it needs to consider the relationship among uncertain objects, and requires the use of numerical integration or Monte-Carlo methods. Sometimes, a query user may not be concerned about the exact probability values. For example, he may only need answers that have sufficiently high confidence. We thus propose the Constrained Nearest-Neighbor Query (C-PNN), which returns the IDs of objects whose probabilities are higher than some threshold, with a given error bound in the answers. The C-PNN can be answered efficiently with probabilistic verifiers. These are methods that derive the lower and upper bounds of answer probabilities, so that an object can be quickly decided on whether it should be included in the answer. We have developed three probabilistic verifiers, which can be used on uncertain data with arbitrary probability density functions. Extensive experiments were performed to examine the effectiveness of these approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.